Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
инфа на защиту.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.09 Mб
Скачать

Гидравлические расчеты водопроводных сетей

Разработчик: ООО "Политерм"

Расчеты ZuluHydro работают в тесной интеграции с геоинформационной системой и выполнены в виде модуля расширения ГИС. В настоящий момент продукт существует в следующих редакциях:

  • ZuluHydro - расчеты систем водоснабжения для ГИС Zulu

  • ZuluArcHydro - расчеты систем водоснабжения для ESRI ArcGIS 8

Сеть весьма просто и быстро заноситься в ГИС с помощью мышки или по координатам. При этом сразу формируется расчетная модель. Остается лишь задать расчетные параметры объектов и нажать кнопку выполнения расчета. Расчету подлежат тупиковые и кольцевые сети водоснабжения, в том числе с повысительными насосными станциями и дросселирующими устройствами, работающие от одного или нескольких источников

Состав расчетов

  • Коммутационные задачи

  • Поверочный расчет водопроводной сети

  • Конструкторский расчет водопроводной сети

  • «Гидроудар» - расчет переходных процессов

  • Построение пьезометрического графика

Коммутационные задачи

Анализ отключений, переключений, поиск ближайшей запорной арматуры, отключающей участок от источников, или полностью изолирующей участок и т.д.

Поверочный расчет водопроводной сети

Целью поверочного расчета является определение потокораспределения в водопроводной сети, подачи и напора источников при известных диаметрах труб и отборах воды в узловых точках.

При поверочном расчете известными величинами являются:

  • Диаметры и длины всех участков сети и, следовательно, их гидравлических сопротивлений

  • Фиксированные узловые отборы воды

  • Напорно-расходные характеристики всех источников

  • Геодезические отметки всех узловых точек

В результате поверочного расчета определяются:

  • Расходы и потери напора во всех участках сети

  • Подачи источников

  • Пьезометрические напоры во всех узлах системы.

К поверочным расчетам следует отнести расчет системы на случай тушения пожара в час наибольшего водопотребления и расчеты сети и водопроводов при допустимом снижении подачи воды в связи с авариями на отдельных участках. Эти расчеты необходимы для оценки работоспособности системы в условиях, отличных от нормальных, для выявления возможности использования в этих случаях запроектированного насосного оборудования, а также для разработки мероприятий, исключающих падение свободных напоров и снижение подачи ниже предельных значений.

Конструкторский расчет водопроводной сети

Целью конструкторского расчета тупиковой и кольцевой водопроводной сети является определение диаметров трубопроводов обеспечивающих пропуск расчетных расходов воды с заданным напором. Под расчетным режимом работы сети понимают такие возможные сочетания отбора воды и подачи ее насосными станциями, при которых имеют место наибольшие нагрузки для отдельных сооружений системы, в частности водопроводной сети. К нагрузкам относят расходы воды и напоры (давления). Водопроводную сеть, как и другие инженерные коммуникации, необходимо рассчитывать во взаимосвязи всех сооружений системы подачи и распределения воды. Расчет водопроводной сети производится с любым набором объектов, характеризующих систему водоснабжения, в том числе и с несколькими источниками.

«Гидроудар»

Расчет нестационарных процессов в сложных трубопроводных гидросистемах. Цель расчета – выявления участков и узлов сети, подвергающихся за время переходного процесса воздействию недопустимо высокого или низкого давления. В качестве событий, порождающих переходные процессы, предполагается включение или выключение насосов либо открытие или закрытие задвижек, а также разрыв трубы. (Подробнее...)

Пьезометрический график

Целью построения пьезометрического графика является наглядная иллюстрация результатов гидравлического расчета (поверочного, конструкторского). При этом на экран выводятся:

  • линия давления в трубопроводе

  • линия поверхности земли

  • высота здания.

Пьезометрический график разрабатывают для двух режимов. Во – первых, для статического режима, когда в системе теплоснабжения от­сутствует циркуляция воды. Считают, что система заполнена водой с температурой 100°С, тем самым исключается необходимость поддержа­ния избыточного давления в теплопроводах во избежание вскипания теплоносителя. Во-вторых, для гидродинамического режима — при на­личии циркуляции теплоносителя в системе.

З


5

Разработку графика начинают со статического режима. Первона­чально изыскивают возможность такого расположения на графике ли­нии полного статического давления, чтобы всех абонентов можно было присоединить к тепловой сети по зависимой схеме. Для этого статиче­ское давление не должно превышать допустимого из условия прочности абонентских установок и должно обеспечивать заполнение водой мест-’ ных систем. Наличие общей статической зоны для всей системы тепло­снабжения упрощает ее эксплуатацию и повышает ее надежность. Уста­новить единый уровень статического давления удается лишь при спо­койном рельефе местности теплоснабжаемого района. При наличии зна­чительной разности геодезических отметок земли установление общей статической зоны оказывается невозможным по следующим причинам. Наинизшее положение уровня статического давления определяется из условий заполнения водой местных систем и обеспечения в верхних точках систем наиболее высоких зданий, расположенных в зоне наиболь­ших геодезических отметок, избыточного давления не менее 0,05 МПа. Такое давление оказывается недопустимо высоким для зданий, располо­женных в той части района, который имеет наиболее низкие геодезиче­ские отметки. При таких условиях возникает необходимость разделения системы теплоснабжения на две статические зоны. Одна зона для части теплоснабжаемого района с низкими геодезическими отметками, дру­гая — с высокими.

На рис. 8 9 показаны пьезометрический график и принципиальная схема системы теплоснабжения района, имеющего значительную раз­ность геодезических отметок уровня земли (40 м). Часть района, при­легающая к источнику теплоснабжения, имеет нулевые геодезические отметки, в периферийной части района отметки составляют 40 м. Высо­та зданий 30 и 45 м. Для возможности заполнения водой систем отопле­ния зданий III я IV, расположенных на отметке 40 м и создания в верх­них точках систем избыточного напора в 5 м уровень полного статиче­ского напора должен быть расположен на отметке 75 м (линия S2— S2). В этом случае статический напор будет равен 35 м. Однако напор в 75 м недопустим для зданий I и II, расположенных на нулевой отметке Для них допустимое наивысшее положение уровня полного статическогр

А — пьезометрический график, б — принципиальная схема системы теплоснабжения, Si — Si — ли­ния полного статического напора нижней зоны, S2 — S2 — линия полного статического напора верхней зоны, Я —напор, развиваемый подпиточным насосом нижней зоны, Я „ —напор, п н1 п HZ

Развиваемый подпиточным насосом верхней зоны, Я рддс~~ нап°Р> на который настроены регу-

Ляторы РДДС (10) и РД2 (9), ДЯ 0 пґ,—напор, срабатываемый на клапане регулятора РДДС

При гидродинамическом режиме, I—IV — абоненты, / — бак подпиточной воды, 2, 3 — подпиточный насос н регулятор подпитки нижней зоны, 4 — предвключенный насос, 5 — теплофикационные па­роводяные подогреватели, 6 — сетевой насос, 7 — пиковый водогрейный котел, 8, 9 — подпиточный насос и регулятор подпитки верхней зоны, 10 — регулятор давления «до себя» РДДС 11 – обрат­ный клапан давления соответствует отметке 60 м. Таким образом, в рассматривае­мых условиях установить общую статическую зону для всей системы теплоснабжения нельзя.

Возможным решением является разделение системы теплоснабжения на две зоны с различными уровнями полных статических напоров — на нижнюю с уровнем в 50 м (линия 5] —Si) и верхнюю с уровнем в 75 м (линия S2—S2). При таком решении всех потребителей можно при­соединить к системе теплоснабжения по зависимой схеме, так как стати­ческие напоры в нижней и верхней зонах находятся в допустимых гра­ницах. .

Чтобы при прекращении циркуляции воды в системе уровни статиче­ских давлений установились в соответствии с принятыми двумя зрнами, в месте их соединения располагают разделительное устройство (см. рис. 8.9, б). Это устройство защищает тепловую сеть от повышенного давления при остановке циркуляционных насосов, автоматически рассе­кая ее на две гидравлически независимые зоны: верхнюю и нижнюю.

При остановке циркуляционных насосов падение давления в обрат­ном трубопроводе верхней зоны предотвращает регулятор давления «до себя» РДДС 10, поддерживающий постоянным заданный напор Ярддс в точке отбора импульса. При падении давления он закрывает­ся. Падение давления в подающей линии предотвращает установленный на ней обратный клапан 11, который также закрывается. Таким обра­зом, РДДС и обратный клапан рассекают теплосеть на две зоны. Для подпитки верхней зоны установлены подпиточный насос 8, который за­бирает воду из’нижней зоны и подает б верхнюю, и регулятор подпитки 9. Напор, развиваемый насосом, равен разности гидростатических напо­ров верхней и нижней зон. Подпитку нижней зоны оссуществляет подпи­точный насос 2 и регулятор подпитки 3.

Регулятор РДДС настроен на напор Ярддс (см. рис. 8.9, а). Ha этот же напор настроен регулятор подпитки РД2.

При гидродинамическом режиме регулятор РДДС поддерживает напор на том же уровне. В начале сети подпиточный насос с регулято­ром поддерживают напор Hoi. Разность этих напоров тратится на преодоление гидравлических сопротивлений в обратном трубопроводе между разделительным устройством и циркуляционным насосом источ­ника тепла, остальная часть напора срабатывается в дроссельной под­станции на клапане РДДС. На рис. 8.9, а эта часть напора показана величиной АЯрддс. Дроссельная подстанция при гидродинамическом режиме позволяет поддерживать давление в обратной линии верхней зоны не ниже принятого уровня статического давления S2 — S2.

Пьезометрические линии, соответствующие гидродинамическому ре­жиму, показаны на рис. 8.9,а. Наибольшее давление в обратном трубо­проводе у потребителя IV составляет 90—40 = 50 м, что допустимо. На пор в обратной линии нижней зоны также находится в допустимых гра­ницах.

В подающем трубопроводе максимальный напор после источника тепла равен 160 м, что не превышает допустимого из условия прочности* труб. Минимальный пьезометрический напор в подающем трубопроводе 110 м, что обеспечивает невскипание высокотемпературного теплоноси­теля, так как при расчетной температуре 150°С минимальное допустимое давление равно 40 м.

Таким образом, разработанный для статического и гидродинамиче­ского режимов пьезометрический график обеспечивает возможность при­соединения всех абонентов по зависимой схеме.

Другим возможным решением гидростатического режима системы теплоснабжения, показанной на рис. 8.9, является присоединение часта абонентов по независимой схеме. Здесь могут быть два варианта. Пер­вый вариант — установить общий уровень статического давления на от- метке 50 м (линия Si — Si), а здания, расположенные на верхних геоде­зических отметках, присоединить по независимой схеме. В этом случае статический напор в водоводяных отопительных подогревателях зданий верхней зоны со стороны греющего теплоносителя составит 50—40= = 10 м, а со стороны нагреваемого теплоносителя определится высотой зданий. Второй вариант — установить общий уровень статического дав­ления на отметке 75 м (линия S2 — Ss) с присоединением зданий верх­ней зоны по зависимой схеме, а зданий нижней зоны — по независимой. В этом случае статический напор в водоводяных подогревателях со сто­роны греющего теплоносителя будет равен 75 м, т. е. меньше допустимой величины (100 м).

При спокойном рельефе местности, но большой протяженности теп­ловых сетей возникает необходимость в установке насосных подкачива­ющих подстанций на подающей и обратной линиях. Это связано с тем, что допустимые потери давления в подающем и обратном трубопроводах оказываются недостаточными для обеспечения оптимальных гидравли­ческих уклонов, а их увеличение путем установки циркуляционных насо­сов, развивающих большие напоры, невозможно из условия прочности трубопроводов и оборудования. При установке подкачивающих подстан­ций по трассе тепловой сети увеличивается общий напор насосов, обе­спечивающий циркуляцию воды в системе, увеличиваются гидравличе­ские уклоны при неизменном положении верхней и нижней границ напо­ров в подающем и обратном трубопроводах. Установка подкачивающих подстанций позволяет также увеличить пропускную способность дейст­вующей системы теплоснабжения.

На рис. 8.10 вверху приведен пьезометрический график тепловой сети большой протяженности, а внизу показано расположение источника тепла, трубопроводов и подкачивающих станций. Если при сохранении нагрузки тепловой сети и уклонов пьезометрических линий ограничиться только установкой циркуляционных насосов на станции, тогда они должны развивать напор 140+40 + 40 = 220 м. Максимальный пьезомет­рический напор в начале сети составит 210 м, что недопустимо из усло­вия прочности трубопроводов. Такой пьезометрический график показан на рис. 8.10 пунктиром. Напор в обратной линии в конце магистрали составляет 100 м, что не позволяет присоединять потребителей по зави­симой схеме. Этот напор является предельным при независимом при-

Рис. 8.10. Пьезо­метрический гра. фик тепловой се­ти большой про­тяженности

— источник тепла;

— место расположе­ния подкачивающих насосов на подаю­щем и обратном теп­лопроводах; 3 — кон­цевой абонент; S — S — линия полного статического напора; #„, Н Н,

Н п. и н. п

—напоры, раз­виваемые насосами: сетевым, подпиточ­ным, подкачивающим на подающей линии, подкачивающим на обратной линии;

И3 — высота зданий соединении. При установке насосных подстанций напор циркуляционного* насоса источника тепла снижается до 140 м, а максимальный напор в начале сети до 130 м, т. е. до допустимого. При этом снижение напора в подающем трубопроводе между источником тепла и насосной подстан­цией не вызывает недопустимого снижения напора в концевой части се­ти. Подкачивающие насосы повышают в этой зоне напор с 80 до 120 м. В результате такого решения напор в подающем трубопроводе изменя­ется в пределах от 80 до 130 м.

Подстанция на обратной линии снижает давление в концевой части сети между подстанцией и абонентом 3. В этой зоне напор в обратной линии не превышает допустимой величины в 60 м.

Таким образом, в результате установки подкачивающих насосных подстанций на тепловой сети большой протяженности удается выдер­жать расположение пьезометрических линий как в подающем, так и в обратном трубопроводах в допустимых границах при сохранении эконо­мически обоснованного удельного падения давления.

В случае понижения рельефа местности от источника тепла сущест­венно возрастает давление в обратной линии периферийной зоны района и оно может выйти за допустимые границы. Для снижения давления в этой части обратной линии на ней устанавливают подкачивающую на­сосную подстанцию. Такой случай показан на рис. 8.11. Если не уста­навливать насосной подстанции на обратной линии, тогда напор у кон­цевого абонента 3 будет равен 60 + 30 = 90 м, что не позволит осущест­вить зависимое присоединение. Пьезометрические линии подающего и обратного теплопроводов для системы б. ез подкачивающей подстанции при развиваемом циркуляционным насосом напоре 130 + 30=160 м по­казаны на рис. 8.11 пунктиром. Максимальный напор в подающей линии оказывается равным 140+30=170 м, т. е. превышает допустимый (160 м). В результате установки на обратном теплопроводе подкачива­ющих насосов пьезометрическая линия подающего теплопровода экви­дистантно опускается на 30 м, а давление в Обратном теплопроводе между насосной подстанцией и концевым абонентом оказывается в зоне

Тепла рельефе местности

1 — источник тепла, 2 — место расположения подкачивающего иасоса на обратном теплопроводе; 3 — концевой абонент, S—5—линия полного статического напора, Н, Н, Н — напоры*

Н ПН чн.0

Развиваемые сетевым, подпиточным и подкачивающим насосом на обратной линии

Л)

Рис. 8 12. Пьезометрический график тепловой сети при значительно снижающемся рельефе местности от источника тепла и разделении системы на две статические зоны л — пьезометрический график, б—принципиальная схема системы теплоснабжения; /—IV — або­ненты; Si — Si — линия полного статического напора в верхней зоне; S2 — Sj — линия полного Статического напора в нижней зоне; 1 — автомат рассечки; 2 — подкачивающий насос; 3 — регу­лятор подпитки Нижней зоны

Лить систему на две статические зоны: верхнюю вблизи источника и нижнюю на дериферии. Такой случай показан на рис. 8.12. Чтобы сни­зить давление в обратной линии в концевой части магистрали в точке М установлена насосная подкачивающая подстанция. Насосы развивают напор в 40 м. Это позволяет снизить напор, развиваемый сетевыми на­сосами, до 85 м и соответственно снизить давление в подающей линии.

Тепловая сеть разделена на две статические зоны: верхнюю вблизи источника тепла с пьезометрическим напором в 50 м и нижнюю в пери­ферийной части сети с пьезометрическим напором в 50 м. Для разделения сети при остановке насосов на две статические зоны на подающей линии установлен автомат рассечки 1, а на обратной линии — обратный кла­пан. При остановке насосов давление в трубопроводах начинает вырав­ниваться и растет давление в обратном трубопроводе на участке от на­сосной подстанции до концевой точки IV. Рост давления передается по импульсной трубке к регулятору, управляющему клапаном рассечки, клапан закрывается и гидравлически разобщает подающую линию на две зоны. Переток воды из верхней зоны в нижнюю предотвращает об­ратный клапан, установленный на обратной линии. В результате при статическом режиме сеть будет разделена на две зоны с уровнями Si — Si и S2 — 52.

Поддержание статического уровня верхней зоны обеспечивает под – питочное устройство источника тепла. Поддержание статического уровня нижней зоны обеспечивает двухимпульсный дроссельный клапан 3. Основным импульсом является давление в обратной линии, разрешаю­щим — давление в подающей линии нижней зоны.

Теплопроводность и теплоемкость материалов

Яндекс.ДиректВсе объявления Шамот! Шамот и другие огнеупоры в наличии! Доставим в Омск! Звоните!gknts.ru 

Теплопроводность

Теплопроводность – способность материала проводить тепловой поток через свою толщину при наличии разности температур на поверхностях, ограничивающих материал. Показателем теплопроводности является коэффициент теплопроводности λ. Иногда теплопроводность выражают величиной, обратной λ,— термическим сопротивлением (R = 1 / λ).

Коэффициент теплопроводности зависит от природы материала, его строения, пористости и влажности. Материал кристаллического строения обычно более теплопроводен по сравнению с материалом аморфного строения. Коэффициент теплопроводности слоистых (слоистые пластики) и волокнистых (древесина) материалов существенно зависит от направления теплового потока по отношению к слоям или волокнам. Так, у древесины вдоль волокон он примерно вдвое больше, чем поперек.

Величина λ тем больше, чем крупнее поры в материалах. Коэффициент снижается с уменьшением средней плотности однородных материалов, причем наименьшую теплопроводность имеют материалы с развитой пористостью и небольшой влажностью. При увлажнений материала теплопроводность его увеличивается, так как коэффициент теплопроводности воды примерно в 25 раз больше, чем воздуха. Ниже приводятся коэффициенты теплопроводности различных материалов, Вт / (м · °С); для сравнения даются значения λ воды и воздуха:

медь……………………. 403,00

сталь……………………. 58,00

гранит……………………. 2,92

бетон тяжелый…………. 1,28—1,55

кирпич глиняный………. 0,70—0,85

туф……………………….. 0,35—0,45

сосна:

вдоль волокон 0,30

поперек волокон    0,17

минеральная вата   0,06—0,09

бетон теплоизоляционный . .0,03—0,08

вода… … 0,599

воздух           0,023

Теплопроводность имеет практическое значение при выборе материалов для наружных стен, перекрытий и покрытий зданий, изоляции теплосетей, холодильников, котлов и т. п.

Теплоемкость

Теплоемкость – свойство материала поглощать тепло при нагревании и отдавать при охлаждении. Отношение теплоемкости к единице количества материала (по массе или объему) называется удельной теплоемкостью, которая численно равна количеству тепла (в Дж), необходимому для нагревания I кг материала на I °С. Удельная теплоемкость, кДж / (кг -°С), приведенных ниже материалов составляет:

медь 0,38

сталь      0,46—0,48

алюминиевые сплавы     0,90

природные каменные материалы    0,75—0,93

бетон тяжелый 0,80—0,92

кирпич    0,74

сосна . .        2,51

Теплоемкость учитывают при определении теплоустойчивости наружных ограждений отапливаемых зданий (требуются материалы с наиболее высокой удельной теплоемкостью), при расчете подогрева составляющих бетона и раствора, также мастик для работ в зимнее время и т. п.

Тепловое расширение

Тепловое расширение – свойство материала изменять объем и размеры при нагревании. Количественно характеризуется коэффициентами объемного и линейного расширения. Коэффициент объемного расширения равен относительному увеличению объема материала, а коэффициент линейного расширения – относительному увеличению его длины при нагревании на 1 °С. Жесткое соединение нескольких материалов с разными коэффициентами теплового расширения может вызвать в конструктивном элементе значительные по величине напряжения, которые приведут к его короблению и растрескиванию. При большом изменении размеров материала из-за колебаний температуры может произойти его разрушение.

Огнестойкость – способность материала противостоять действию огня и высоких температур во время пожара. По степени огнестойкости все материалы делят на несгораемые, трудносгораемые и сгораемые.

Под действием огня или высокой температуры материалы ведут себя по-разному: несгораемые (природные каменные материалы, бетон, кирпич, сталь и т. п.) не воспламеняются, не тлеют и не обугливаются; трудносгораемые (фибролит, асфальтовый бетон, древесина, пропитанная огнезащитными составами) с трудом воспламеняются, тлеют или обугливаются в присутствии источника огня; сгораемые (незащищенная древесина, войлок, рубероид, большинство полимерных материалов) воспламеняются и продолжают гореть после удаления источника огня. Причем из числа несгораемых одни материалы (кирпич глиняный, черепица, большинство бетонов) практически не деформируются и не растрескиваются, другие – значительно деформируются (сталь), а некоторые разрушаются (гранит, мрамор, известняк).

При оценке огнестойкости материалов необходимо также учитывать совместное действие высокой температуры, воды и других жидкостей, используемых при тушении пожара, а также химических веществ и газов, выделяющихся из некоторых материалов (особенно полимерных).

Огнеупорность – свойство материала выдерживать, не расплавляясь и не деформируясь, длительное воздействие высоких температур. По степени огнеупорности материалыподразделяют на огнеупорные, тугоплавкие и легкоплавкие: огнеупорные (например, шамотный кирпич) выдерживают продолжительное воздействие температуры свыше 1580 °C (используют для внутренней облицовки промышленных печей), тугоплавкие (гжельский кирпич) выдерживают температуру 1350—1580 °С, легкоплавкие (кирпич глиняный обыкновенный) противостоят температуре ниже 1350 °С.

Электропроводность – способность материала проводить электрический ток. Она зависит от обратного электропроводности свойства – электрического сопротивления. Очевидно, что чем меньше удельное электрическое сопротивление материала, тем лучше он проводит электрический ток. В зависимости от этого показателя все материалы подразделяют на проводники, полупроводники и изоляторы. К проводникам относятся серебро, медь и ее сплавы, алюминий, сталь. Хорошими изоляторами являются резина, асбест, фарфор, стекло, пластические массы. Полупроводники (кремний, мышьяк и др.) занимают промежуточное положение между проводниками и изоляторами; в обычных условиях они слабо проводят электрический ток. Полупроводники широко применяются в различных отраслях народного хозяйства, в частности для регулирования силы тока и напряжения, преобразования одного вида энергии в другой.

Электропроводность и соответственно электрическое сопротивление материалов учитывают при оценке качества и выборе шнуров, проводов, кабелей, электроустановочных и других изделий.

Цвет материалов – это определенное зрительное ощущение, вызываемое в результате воздействия на глаз потоков электромагнитного излучения в диапазоне видимой части спектра. В общем случае цвет материала связан с его окраской, свойствами поверхности и оптическими свойствами источников света. Цвет играет большую роль при выборе облицовочных и отделочных материалов.

Структура – строение материала, определенное сочетание его составных частей. В структуре материалов различают структуру горной породы, структуру металла и др.

Фактура (от латинского фактура – обработка, строение) – видимое строение поверхности материала. Различают две группы фактур: рельефные (с разной высотой и разнообразным характером рельефа) и гладкие (от зеркально-блестящих до шероховато-ровных).

Теплоизоляция труб современными материалами

Какой же должна быть современная эффективная теплоизоляция трубопроводов? Прежде всего определим конкретные функции теплогидроизолирующего покрытия:

  • уменьшение потерь тепла в трубопроводах горячего водоснабжения, отопления и т. п.;

  • предотвращение конденсации влаги в изоляторе и на поверхности труб;

  • обеспечение заданной температуры на поверхности изоляции (по требованиям безопасности);

  • предотвращение замерзания воды при остановке ее движения в зимнее время;

  • увеличение срока службы трубопроводов за счет замедления коррозии металла.

Но применение теплоизоляции не может ограничиваться магистралями централизованного отопления. Как видно из приведенных выше оценок специалистов, изоляция внутридомовых тепловых сетей для уменьшения теплопотерь имеет не меньшее значение. Следовательно, возникает задача выбора метода эффективной изоляции труб самых разных диаметров с учетом температуры теплоносителя и условий эксплуатации.

В зависимости от диаметра изолируемых труб используются жесткие формованные изделия

 (цилиндры,полуцилиндры) или рулонные мягкие изоляторы (маты).

Для изоляции труб небольшого диаметра подходят цилиндры, полуцилиндры или сегменты из полимерных или минераловатных теплоизолирующих материалов. Они обеспечивают весьма высокое термосопротивление, имеют низкое водопоглощение, высокую механическую прочность и точные геометрические размеры. Как правило, цилиндры и полуцилиндры снабжаются «замками», обеспечивающими удобный и быстрый монтаж на трубах.

Рассмотрим наиболее распространенные теплоизоляционные материалы и области их применения.

Минеральная вата

Минераловатные изделия из базальтовых горных пород на синтетическом связующем - весьма эффективные теплоизоляторы, пригодные для применения в самых различных условиях эксплуатации. Изделия из минеральной ваты выдерживают температуры до 650°С без потери теплоизолирующих и механических свойств; они формостабильны, негорючи, обладают высокой химической стойкостью к маслам, растворителям, кислотам, щелочам, также биостойки и нетоксичны, а благодаря гидрофобизирующей пропитке имеют пренебрежимо малое влагопоглощение.

Такие изделия используют для изоляции трубопроводов тепловых сетей канальной прокладки и трубопроводов горячего водоснабжения, в том числе в подвалах и на чердаках жилых и общественных зданий, а также трубопроводов с повышенной температурой поверхности, например,транспортирующих перегретый пар.

Соответственно конкретным задачам и нуждам в перечисленных областях применяются цилиндры, маты и плиты без покрытия или покрытые с одной стороны металлической сеткой, стеклорогожей, алюминиевой фольгой и т. д.

Для изоляции трубопроводов больших диаметров (273 мм и более) пригодны такие рулонные изоляторы, как гидрофобизирован-ные минераловатные маты.

Для трубопроводов диаметром от 18 до 273 мм предпочтительны формованные минераловатные изделия (цилиндры, полуцилиндры, сегменты).

Стекловолокно

Стекловата состоит из волокон, которые по технологии изготовления и свойствам близки к волокнам минеральной ваты. Но если волокна каменной ваты имеют среднюю толщину 5 мкм и длину 30-40 мм, то волокна стекловаты - 3-4 мкм и 1550-200 мм соответственно. 

Для производства стекловаты используется то же сырье, что и при изготовлении обычного стекла, а также стеклобой.

Теплоизоляционные изделия из стеклянного штапельного волокна, характеризующиеся низкой плотностью и температурой применения до 180°С, рекомендуются для трубопроводов надземной прокладки, в том числе тепловых сетей. Техническая теплоизоляция из стекловаты имеет более ограниченную сферу применения по сравнению с минеральной ватой ввиду значительно меньшей максимальной рабочей температуры.

Качественную стекловату отличают высокая вибростойкость, биологическая и химическая стойкость, а также длительный срок службы.

Пенополиуретан

Изделия из пенополиуретана с защитными покрытиями из фольгоизола или рубероида используют для теплоизоляции трубопроводов самого различного назначения. Однако недостатками пенополиуретана являются относительная дороговизна, горючесть, нестойкость к некоторым растворителям, действию прямого солнечного света, а также невозможность применения на трубах с температурой выше 130°С.

Изоляция на все элементы трубопровода (трубы, отводы, опоры, компенсаторы) наносится в заводских условиях методом заливки «труба в трубе», когда жидкие компоненты пенополиуретана впрыскиваются в пространство между стальной трубой и надетой на нее сплошной полиэтиленовой оболочкой, где затем отвердевают. В результате получается жесткая конструкция, обеспечивающая хорошие механические и теплофи-зические характеристики.

Производство теплоизолирующих скорлуп осуществляется методом вспенивания полиуретановой композиции в цилиндрических разъемных формах. Надежную гидроизоляцию стыков трубопроводов обеспечивают термоусажива-ющиеся полиэтиленовые ленты, а также муфты отечественного или зарубежного производства.

Проблема ограждения пенопо-лиуретановой теплоизолирующей оболочки от неблагоприятных факторов внешней среды решается при помощи полимерного или жесткого защитного кожуха.

Трубопроводы с полимерным защитным кожухом предохраняют изоляцию от воздействия влаги, механических повреждений, предотвращают диффузию полиуретана и обеспечивают хорошую защиту от коррозии.

В трубопроводах с жестким защитным кожухом используются спирально-шовные трубы из горя-чеоцинкованной жести. Стальные трубы в жестяном защитном кожухе имеют изоляцию из вспененного полиуретана и устанавливаются методом наземной укладки.

Другие вспененные теплоизоляционные материалы

Номенклатура вспененных теплоизоляционных материалов весьма обширна. В основном это различные полимеры, такие, как вспененные каучуки или пенопо-лиэтилен. Их общие недостатки: горючесть (даже несмотря на антипиреновые добавки), умеренная токсичность и химическая нестойкость. Согласно противопожарным требованиям при применении теплоизоляционных конструкций из горючих материалов для трубопроводов надземной прокладки следует предусматривать вставки длиной 3 м из негорючих материалов не менее чем через 100 м длины трубопровода.

Изделия из вспененного синтетического каучука с преимущественно закрытыми порами больше подходят для изоляции систем холодного водоснабжения и трубопроводов с отрицательными температурами. Однако иногда этот материал используют и для изоляции труб горячего водоснабжения с температурой приблизительно до 150°С. Стоимость такой изоляции в несколько раз ниже, чем более долговечных минераловатных изделий.

Особняком стоит такой материал, как вспененное стекло, или пеностекло, с закрытыми порами, негорючий, с температурой применения от -200 до 485°С и высокими прочностными свойствами. Может использоваться для изоляции надземных и подземных трубопроводов, на российском рынке представлен формованными изделиями (скорлупы)

NOBASIL LSP Рулонный материал для изоляции трубопроводов, систем кондиционирования, вентиляционных и трубопроводных отопительных устройств, а также применяется в мансардных помещениях, саунах, в системе обогреваемых полов, в деревянных конструкциях.    Дополнительные тепло сберегающие свойства материалу придает отражающий слой из алюминиевой фольги.

 

 

  Преимущества плиты НОБАСИЛ LSP: - обладает повышенной прочностью на сжатие; - устойчив против плесени, микроорганизмов и грызунов;                          -предельная положительная температура изолируемых поверхностей 500°С (по температуростойкости минераловатного слоя); - алюминиевая фольга является дополнительным защитным слоем;  - не повышает коррозионную агрессивность среды при контакте с металлическими материалами; - легко обрабатывается выпиливанием и резкой.

Прокладка трубопроводов

Трубопроводы тепловых сетей могут быть проложены на земле, в земле и над землей. При любом способе монтажа трубопроводов необходимо обеспечивать наибольшую надежность работы системы теплоснабжения при наименьших капитальных и эксплуатационных затратах.

Капитальные затраты определяются стоимостью строительно-монтажных работ и затраты на оборудование и материалы для прокладки трубопровода. В эксплуатационные включают затраты по обслуживанию и содержанию трубопроводов, а так же затраты связанные  с потерей тепла в трубопроводах и расходом электроэнергии на всей трассе. Капитальные затраты определяются в основном стоимостью оборудования и материалов, а эксплуатационные – стоимостью тепла, электроэнергии и ремонта.

 

Основными видами прокладками трубопроводов являются подземная и надземная. Подземная прокладка трубопроводов наиболее распространена. Она подразделяется на прокладку трубопроводов непосредственно в земле (бесканальная) и в каналах. При наземной прокладке трубопроводы могут находиться на земле или над землей на таком уровне, что бы они не препятствовали движению транспорта. Надземные прокладки применяются на загородных магистралях при пересечении оврагов, рек, железнодорожных путей и других сооружений.

Надземные прокладки трубопроводов в каналах или лотках расположенных на поверхности земли или частично заглубленных, применяются, как правило, в районах с вечномерзлыми грунтами.

Способ монтажа трубопроводов зависит от местных условий объекта – назначения, эстетических требований, наличия сложных пересечений с сооружениями и коммуникациями, категории грунта – и должен приниматься на основании технико-экономических расчетов возможных вариантов. Минимальные капитальные затраты требуются на  монтаж теплотрассы  с использованием подземной прокладки  труб без излояции и каналов. Но значительные потери тепловой энергии, особенно во влажных грунтах, приводят  к существенным дополнительным затратам и к преждевременному выходу трубопроводов из строя. В целях обеспечения надежности работы теплопроводов необходимо применять механическую и тепловую их защиту.

Механическая защита труб при монтаже труб под землей может быть обеспечена путем устройства  каналов, а тепловая защита – путаем применения  тепловой изоляции, нанесенной непосредственно на наружную поверхность трубопроводов. Излояция труб и проклада их в каналах увеличивают первоначальную стоимость теплотрассы, но быстро окупаются в  процессе эксплуатации за счет повышения эксплуатационной надежности и уменьшения тепловых потерь.

 

Подземная прокладка трубопроводов.

При монтаже трубопроводов тепловых сетей под землей могут быть использованы два способа:

  1. Непосредственная прокладка труб в земле (бесканальная).

  2. Прокладка труб в каналах (канальная).

Прокладка трубопроводов в каналах.

Для того, что бы защитить теплопро­вод от внешних воздействий, и для обеспечения свободного теплового удлинения  труб предназначе­ны каналы. В зависимости от ко­личества прокладывае­мых в одном направле­нии теплопроводов при­меняют непроходные, по­лу проходные или про­ходные каналы.

Для закрепления трубопровода, а так же обеспечения свободного перемещения при температурных удлинениях трубы укладывают па опоры. Что бы обеспечить отток воды лотки укладываются с уклоном не менее 0,002. Вода из нижних точек лотков удаляется самотеком в систему дренажа или из специальных приямков при помощи насоса откачивается вканализацию.

Кроме продольного уклона лотков, перекрытия так же должны иметь поперечный уклон порядка 1-2% для отвода паводковой и атмосферной влаги. При высоком уровне грунтовых вод наружную поверхность стенок, перекрытия и дна канала покрывают гидроизоляцией.

Глубина прокладки лотков принимается из условия минимального объема земляных работ и равномерного распре­деления сосредоточенных нагрузок на перекрытие при движении автотранспорта. Слой грунта над каналом должен состав­лять порядка 0,8—1,2 м и не менее. 0,6 м в мес­тах, где движение автотранспорта запрещено.

Непроходные каналы применяются при большом числе труб небольшого диа­метра, а так же двухтрубной прокладке для всех диаметров. Их конструкция зависит от влажности грунтов. В сухих грунтах наибольшее распространение получили блочные каналы с бетонными или кирпичными стенками либо железобе­тонные одно- или многоячейковые.

Стенки канала могут иметь толщину 1/2 кирпича (120 мм) при трубопроводах небольшого диаметра и 1 кирпич (250 мм) при трубопроводах крупных диа­метров.

Стенки возводят только из обыкновенного кирпича марки не ниже 75. Силикатный кирпич из-за малой его морозоустойчивости применять не рекомендуется. Каналы перекрывают железобетонной плитой. Кирпичные каналы в зависимости от категории грунта имеют несколько разновидностей. В плотных и сухих грунтах дно канала не требует бетонной подготов­ки, достаточно хорошо утрамбовать щебень непосредст­венно в грунт. В слабых грунтах на бетонное основание укладывают дополнительно железобетонную плиту. При высоком уровне стояния грунтовых вод для их отвода предусматривают дренаж. Стенки возводят после монтажа и изоляции трубопро­водов.

Для трубопроводов крупных диаметров применяют каналы, собираемые из стандартных железобетонных эле­ментов лоткового типа КЛ и КЛс, а также из сборных железо­бетонных плит КС.

Каналы типа КЛ состоят из стандартных лотковых элемен­тов, перекрываемых плоскими железобетонными плитами.

Каналы типа КЛс состоят из двух лотковых элементов, уложенных друг на друга и соединенных на цементном растворе при помощи двутавра.

В каналах типа КС стеновые панели устанав­ливают в пазы плиты днища и заливают бетоном. Эти каналы перекрывают плоскими железобетонными плитами.

Основания каналов всех типов выполняют из бетонных плит или пес­чаной подготовки в зависимости от вида грунта.

Наряду с рассмотрен­ными выше каналами применяются и другие их типы.

Сводча­тые каналы состоят из железобетонных сводов или скорлуп полукруглой формы, которыми накрывают трубопровод. На дне траншеи выпол­няют лишь основание ка­нала.

Для трубопроводов крупного диаметра применяют сводчатый двухячейковый ка­нал с разделительной стенкой, при этом свод канала образуется из двух полусводов.

При монтаже непроходного ка­нала, предназначенного для прокладки в мокрых и слабых грунтах стенки и дно канала выполненяют в виде железобе­тонного корытообразного лотка, а перекрытие состоит из сборных железобетонных плит. Наружная поверхность лотка (стенки и дно) покрывается гидроизоляцией из двух слоев рубероида на битумной мастике, поверхность основания также покрывают гидроизоляцией затем устанавливают или бетонируют лоток. Перед засыпкой траншеи гидроизоляцию защищают спе­циальной стенкой, выполненной из кирпича.

Замена труб, вышедших из строя, или ремонт тепловой изоляции в таких каналах возможны только при разработке групп, а иногда и разборки мостовой. Поэтому тепловая сеть в непроход­ных каналах трассируется вдоль газонов или на территории зе­леных насаждений.

 

Полупроходные каналы. В сложных условиях пересечения теплопроводами существующих подземных устройств (под проезжей частью, при высоком уровне стояния грунтовых вод) вместо непроходных устраивают полупроходные каналы. Полу­проходные каналы применяют также при небольшом количестве труб в тех местах, где по условиям эксплуатации вскрытие про­езжей части исключено. Высоту полупроходного канала прини­мают равной 1400 мм. Каналы выполняют из сборных железобе­тонных элементов. Конструкции полупроходных и проходных каналов практически аналогичны.

 

Проходные каналы применяют при наличии большого количества труб. Их прокладывают под мостовыми крупных магистралей, на территориях боль­ших промышленных предприятий, на участках, прилегающих к зданиям теплоэлектроцентралей. Наряду с теплопроводами в проходных каналах располагают и другие подземные коммуни­кации - электрокабели, телефонные кабели, водопровод, газо­провод и т. п. В коллекторах обеспечивается свободный доступ обслуживающего персонала к трубопроводам для осмотра и ликвидации аварии.

Проходные каналы должны иметь естественную вентиляцию с трехкратным обменом воздуха, обеспечивающую температуру воздуха не более 40° С, и освещение. Входы в проходные каналы устраивают через каждые 200 - 300 м. В местах, где располага­ются сальниковые компенсаторы, предназначенные для восприя­тия тепловых удлинений, запорные устройства и другое оборудо­вание, устраивают специальные ниши и дополнительные люки. Высота проходных каналов должна быть не менее 1800 мм.

Их конструкции бывают трех типов — из ребри­стых плит, из звеньев рамной конструкции и из блоков.

Проходные каналы из ребристых плит, выполняют из четырех железобетонных панелей: днища, двух стенок и плиты перекрытия, изготовляемых заводским способом на про­катных станах. Панели соединены болтами, а наружная поверх­ность перекрытия канала покрывается изоляцией. Секции канала устанавливаются па бетонную плиту. Вес одной секции такого ка­нала сечением 1,46х1,87 м и длиной 3,2 м составляет 5 т, входы устраивают через каждые 50 м.

Проходной канал из железо­бетонных звеньев рамной конструкции, сверху покрывается изоляцией. Элементы канала имеют длину 1,8 и 2,4 м и бывают нормальной и повышенной прочности при заглублении соответст­венно до 2 и 4 м над перекрытием. Железобетонную плиту подкладывают только под стыками звеньев.

Следующий вид это коллектор, изготовляемый из же­лезобетонных блоков трех типов: Г-образного стенового, двух плит перекрытия и днища. Блоки в стыках соединяются моно­литным железобетоном. Эти коллекторы выполняются также нормальными и усиленными.

 

Бесканальная прокладка.

При бесканальной прокладке за­щиту трубопроводов от механических воздействий выполняет усиленная тепловая изоляция — оболочка.

Достоинствами бесканальной прокладки трубопроводов являются: сравнительно небольшая стоимость строительно-мон­тажных работ, уменьшение объема земляных работ и сокраще­ние сроков строительства. К ее недостаткам относятся: усложне­ние ремонтных работ и затруднение перемещения трубопрово­дов, зажатых грунтом. Бесканальную прокладку трубопроводов широко применяют в сухих песчаных грунтах. Она находит при­менение в мокрых грунтах, но с обязательным устройством в зо­не расположения труб дренажа.

Подвижные опоры при бесканальной прокладке трубопрово­дов не применяются. Трубы с теплоизоляцией укладывают не­посредственно на песчаную подушку, находящуюся на предвари­тельно выровненном дне траншеи. Песчаная подушка, являю­щаяся постелью для труб, имеет наилучшие упругие свойства и допускает наибольшую равномерность температурных переме­щений. В слабых и глинистых грунтах слой песка на дне траншеи должен быть толщиной не менее 100-150 мм. Неподвижные опо­ры при бесканальной прокладке труб представляют собой желе­зобетонные стенки, устанавливаемые перпендикулярно теплопро­водам.

Компенсация тепловых перемещений труб при любом спосо­бе их бесканальной прокладки обеспечивается при помощи гну­тых или сальниковых компенсаторов, устанавливаемых в специ­альных нишах или камерах.

На поворотах трассы во избежание зажатия труб в грунте и обеспечения возможных перемещений устраивают непроходные каналы. В местах пересечения стенки капала трубопроводом в результате неравномерной осадки грунта и основания канала происходит наибольший изгиб трубопроводов. Во избежание из­гиба трубы необходимо оставлять в отверстии стенки зазор, за­полняя его эластичным материалом (например, асбестовым шну­ром). Тепловая изоляция трубы включает в себя утеплительный слой из автоклавного бетона с объемным весом 400 кг/м3, имеющего стальную арматуру, гидроизоляционное покрытие, состоящей из трех слоев бризола на битумно-резиновой мастике, в состав которой входят 5—7% резиновой крошки и защитный слой, вы­полненный из асбестоцементной штукатурки  по стальной сет­ке.

Обратные магистрали трубопроводов изолируются таким же образом, как и подающие. Однако наличие изоляции об­ратных магистралей зависит от диаметра труб. При диаметре труб до 300 мм устройство изоляции обяза­тельно; при диаметре труб 300-500 мм устройство изоляции должно быть определено технике экономическим расчетом исходя из местных условий; при диаметре труб 500 мм и более уст­ройство изоляции не предусматривается. Трубопроводы при такой изоляции укладывают непосредст­венно на выровненный уплотненный грунт основания траншеи.

Для понижения уровня грунтовых вод предусматривают специальные дренажные трубопроводы, которые укладывают на глубине 400 мм от дна канала. В зависимости от условий работы дренажные устройства могут быть выполнены из различных труб: для безнапорных дренажей применяют керамические бетонные и асбестоцементные, а для напорных - стальные и чу­гунные.

Дренажные трубы прокладывают с уклоном 0,002—0,003. На поворотах и при перепадах уровней труб устраивают специаль­ные смотровые колодцы по типу канализационных.

 

Надземная прокладка трубопроводов.

Если исходить из удобства монтажа и обслуживания то прокладка труб над землей является более выгодна чем прокладка под землей. Так же это требует меньших материальных затрат. Однако это поритит внешний вид окружающей среды и поэтому такой вид прокладки труб не везде может применяться.

Несущими конструкциями при надземной прокладке трубо­проводов служат: для небольших и средних диаметров — надзем­ные опоры и мачты, обеспечивающие расположение труб на нужном расстоянии от поверхности; для трубопроводов больших диаметров, как правило, опоры-эстакады. Опоры, обычно, выполняют из железобетонных блоков. Мачты и эстака­ды могут быть как стальными, так и железобетонными. Расстоя­ние между опорами и мачтами при надземной прокладке должно быть равно расстоянию между опорами в каналах и зависит от диаметров трубопроводов. В целях сокращения количества мачт устраивают при помощи растяжек промежуточные опоры.

При надземной прокладке тепловые удлинения трубопрово­дов компенсируются при помощи гнутых компенсаторов, требу­ющих минимальных затрат времени на обслуживание. Обслуживание арматуры производится со специально устраиваемых площадок. В качестве подвижных следует применить катковые опоры, создающие минимальные горизонтальные усилия.

Так же при надземной прокладке трубопроводов могут применяться низкие опоры, которые могут быть выполнены из металла или низких бетонных блоков. В местах пересечения такой трассы с пешеходными дорожками устанавливают специальные мостики. А при пересечении с автодорогами – или выполняют компенсатор нужной высоты или под дорогой прокладывают канал для прохода труб.

1. ВИДЫ ПРОКЛАДКИ ТРУБОПРОВОДОВ.      При устройстве современных систем водоснабжения и водоотведения прокладывают напорные и безнапорные (самотечные) трубопроводы из различных видов труб.      Расположение трубопроводов в плане в целях экономии труб должно быть оптимально. По возможности их необходимо прокладывать по кратчайшему направлению при минимальном количестве искусственных сооружений (переходов, дюкеров), с тем, чтобы трубопроводы было легче эксплуатировать и ремонтировать. При прокладке сетей и подземных водоводов необходимо соблюдать установленные минимальные расстояния как между ними (при параллельной укладке), так и до других подземных и надземных сооружений и коммуникаций.      Расположение трубопроводов в профиле и виды их прокладки. Расположение трубопроводов в профиле, т.е. по высоте или глубине, зависит от принятого вида их прокладки - открытого, скрытого или закрытого. Открытым способом трубы укладывают по существующим или специально возводимым конструкциям (стенам, опорам, эстакадам) или в проходных и в полупроходных каналах и коллекторах. Доступ для осмотра таких труб возможен как в процессе прокладки, так и их эксплуатации. Скрытая прокладка труб осуществляется в траншеях и непроходных каналах. Доступ к трубам возможен только в период строительства, а при эксплуатации — после разрытия грунта или вскрытия конструкций каналов. Закрытым способом трубы укладывают без разработки грунта — прокалыванием, продавливанием, горизонтальным бурением, щитовой или штольневой проходкой.      Технология строительства трубопроводов во многом зависит от их назначения и вида прокладки, от материала труб, их длины, диаметра, толщины стенок, наличия и вида изоляции, а также от обеспеченности строительства монтажными элементами (трубными секциями, плетями) и др. Особенности монтажа трубопроводов состоят в том, что их монтируют из отдельных элементов (труб) сравнительно небольшой длины, в связи с чем приходится устраивать большое количество стыков (от 60 до 500 на 1 км трубопровод), что увеличивает трудоемкость и стоимость работ. Для снижения этих показателей осуществляют предварительное укрупнение труб в отдельные изолированные звенья или секции из двух, трех и большего числа труб. При этом трудоемкость монтажных работ сокращается в 2-4 раза. Монтаж трубопроводов сопряжен с необходимостью соединения труб или их секций в непрерывную нитку. Соединения труб бывают: сварные, клеевые, раструбные, фланцевые и муфтовые. Сваркой соединяют стальные, пластмассовые и стеклянные трубы, обеспечивая высокопрочные, плотные и жесткие стыки. Пластмассовые и стеклянные трубы соединяют также склеиванием. Раструбные соединения применяют для чугунных, керамических, железобетонных и пластмассовых труб. На фланцах (надвижных или приваренных) болтами соединяют различные трубы с прокладкой между фланцами резины, паро-нита и др. На муфтах соединяют металлические и неметаллические трубы. Общим недостатком устройства раструбных, фланцевых и муфтовых соединений является их высокая трудоемкость при больших затратах ручного труда.      Процесс прокладки трубопроводов заключается в установке и сборке на трассе монтажных узлов — труб (или их секций, плетей), фасонных частей, компенсаторов и арматуры - в проектное положение. При этом чем крупнее монтажный узел, тем меньше монтажных стыков и легче сборка трубопровода. Узлы комплектуют и испытывают на трубозаготовительных заводах или базах, где их покрывают изоляцией или окрашивают. 2. ПОДГОТОВКА ТРАНШЕЙ. УСТРОЙСТВО ЕСТЕСТВЕННЫХ И ИСКУССТВЕННЫХ ОСНОВАНИЙ ПОД ТРУБОПРОВОДЫ      Перед укладкой трубопровода проверяют глубину и уклоны дна траншеи, а также крутизну откосов. Если траншея устроена с креплениями, то проверяют правильность их установки, обращая особое внимание на плотность прилегания щитов к стенкам траншей.       Необходимым условием для надежной эксплуатации трубопровода является укладка его на проектную отметку с обеспечением плотного его опирания на дно траншеи по всей длине, а также сохранность труб и их изоляции при укладке. Поэтому подготовке траншей к укладке труб следует уделять особое внимание. При прокладке трубопроводов в городских условиях траншею часто пересекают действующие подземные коммуникации (трубопроводы, кабели). Если они находятся ниже строящегося трубопровода, то это не осложняет его прокладку, а если выше, то необходимо принимать меры по заключению их в специальные короба с надежным креплением. Приямки в траншеях для заделки раструбных и муфтовых стыковых соединений, а также сварки неповоротных стыков стальных труб отрывают для труб диаметром до 300 мм непосредственно перед их укладкой, а для труб больших диаметров — за 1—2 дня до их укладки.      Трубопроводы в системах водоснабжения и водоотведения укладывают на естественное или искусственное основание.      При естественном основании трубы укладывают непосредственно на грунт ненарушенной структуры, обеспечивая поперечный и продольный профиль основания по проекту.      При несущей способности грунтов оснований менее 0,1 МПа (1 кгс/см2) необходимо устраивать искусственные основания — бетонные или железобетонные, сборные лекальные, свайные. Для увеличения плотности грунтов оснований широко применяют метод уплотнения.      Несущая способность труб в значительной мере зависит от характера опирания их на основании. Так, трубы, уложенные в грунтовое ложе с углом охвата 120°, выдерживают нагрузку на 30—40 % большую, чем трубы, уложенные на плоское основание. При укладке труб на искусственное бетонное основание с углом охвата 120° несущая способность труб повышается в 1,7 раза и более.      Кроме того, величина угла охвата для одних и тех же условий влияет на несущую способность труб.

Угол опирания, град.

0

30

60

90

120

150

180

Увеличение несущей способности, раз

1

1,1

1,21

1,32

1,41

1,47

1,5

     Как видно из этих данных, увеличение угла опирания трубы более 120° является нецелесообразным.      Таким образом, устройство основания — один из главных факторов, обеспечивающий долговечность и надежность эксплуатации трубопроводов. С увеличением диаметра трубопроводов это приобретает более важное значение, поскольку стоимость таких сооружений значительно возрастает.      При укладке железобетонных труб больших диаметров (1,5-3,5 м) в песчаных грунтах (рис. 18.1, а) устраивается ложе без нарушения естественной структуры грунта, которое должно охватывать 1/4 - 1/3 поверхности трубы. В глинистых грунтах (рис. 18.1, б) трубы укладывают на песчаные подушки толщиной 0,1—0,3 м. В тех случаях, когда трубопроводы прокладывают в твердых (скальных) грунтах (рис. 18.1, в), необходимо устройство песчаной подушки с тщательным уплотнением толщиной не менее 0,1 м над выступающими неровностями основания.      Для укладки труб в недостаточно устойчивых сухих грунтах на дно траншеи отсыпают слой из гравия, гравийно-песчаной смеси или песка толщиной не менее 0,1 м на всю ширину траншеи (рис. 18.1, г). На этом слое устраивают бетонную подливу в виде лотка высотой не менее 0,1 наружного диаметра трубы и толщиной в средней части ее не менее 0,1 м.      В водонасыщенных грунтах, хорошо отдающих воду, железобетонные трубы больших диаметров укладывают на бетонное основание,

Рис. 18.1. Типы оснований под трубопроводы: 1 — труба; 2 — дно траншеи; 3 — ложе; 4 — песчаная подушка; 5 — скальное основание; 6— толь; 7— бетонная плита; 8— монолитный бетон; 9— щебеночное основание; 10— дренаж; 11 — железобетонная плита; 12— бетонное основание; 13 — плита ростверка; 14 — железобетонные сваи; 15 — сборная плита

располагаемое на гравийно-песчаной или щебеночной подготовке толщиной 0,20-0,25 м с устройством в ней дренажной линии (рис. 18.1, д). В грунтах и плывунах, плохо отдающих воду, бетонное основание укладывают на железобетонные плиты, которые, в свою очередь, кладут на щебеночную подготовку (рис. 18.1, е).      Если водонасыщенные грунты содержат органические включения или являются слабыми и могут вызывать неравномерные осадки, устраивают жесткие основания в виде ростверков на сваях (рис. 18.1, ж).       Железобетонные трубы диаметром 2-3,5 м рекомендуется укладывать на сборные основания (лекальные блоки или плиты с подбетонкой стула). Кроме того, под такие трубы основания выполняются также из плит и брусьев, соединяемых между собой сваркой, с замоноличиванием стыка бетоном (рис. 18.1, з). При прокладке трубопроводов в сухих пучинистых грунтах искусственное основание под ними выполняют в виде песчаной подушки слоем 0,20-0,25 м на предварительно уплотненном пучинистом грунте.      В последнее время разработан ряд механизмов для устройства приямков и выкружки, сопряженных с базовой машиной, передвигающейся по дну траншеи.      Для прокладки железобетонных трубопроводов диаметром 1400— 2000 мм создана машина МВ-15 на базе трактора Т-130БГ-1, которая производит планировку дна, нарезку ложа и отрывку приямков глубиной 0,35 и 0,5 м, стыковку труб и протаскивание центратора.      Согласно СНиПу основание под трубопроводы должно быть принято заказчиком и оформлено актом на скрытые работы. В процессе устройства основания необходимо проверять соответствие продольного и поперечного уклонов проектным данным путем нивелирования дна траншеи. При устройстве ложа необходимо шаблоном проверять его глубину и угол охвата. При гравийно-щебеночном основании измеряют толщину его отдельных участков.      При устройстве бетонного основания проверяют все его элементы: толщину и высоту на уровне лотка трубы, марку бетона. В железобетонных монолитных основаниях контролируют укладку арматуры и соответствие ее проекту. При производстве работ в зимнее время необходимо следить, чтобы в момент укладки грунт не был проморожен. 3. ВЫБОР КРАНОВ ДЛЯ ПРОКЛАДКИ ТРУБОПРОВОДОВ      Как и в случае выбора кранов для монтажа строительных конструкций, краны для прокладки трубопроводов также выбирают в два этапа. Вначале, на I этапе выбирают несколько технически пригодных типов или марок кранов по вылету их крюка и грузоподъемности, а на II этапе по технико-экономическим показателям вариантов кранов выбирают наиболее экономичный, который и принимают для трубоукладочных работ.      Но еще до I этапа выбора кранов необходимо в принципе уточнить тип необходимых кранов, который определяют по способу прокладки труб. При этом следует иметь в виду, что для прокладки стальных магистральных трубопроводов, особенно больших диаметров, удлиненными секциями или плетями, целесообразно использовать краны-трубоукладчики, главной особенностью которых является жесткое крепление грузоподъемной стрелы сбоку. Такие краны являются неповоротными.      Для прокладки трубопроводов отдельными трубами из чугунных, а также железобетонных, керамических и асбестоцементных труб с раскладкой их на берме траншеи, когда в процессе их укладки требуется поворот стрелы крана с трубой к траншее, применять краны-трубоукладчики практически невозможно. В этом случае следует избирать мобильные стреловые краны — автомобильные, пневмоколесные или гусеничные нужной грузоподъемности. При выборе типа применяемых кранов необходимо также учитывать, что вылет крюка у кранов-трубоукладчиков по сравнению со стреловыми ограничен (5,0-7,5 м), что затрудняет их использование даже при прокладке стальных магистральных трубопроводов плетями при большой глубине траншей, когда требуются краны с большими вылетами крюка (до 10-14 м и более). Выбрав для каждого конкретного случая прокладки трубопроводов с учетом вышеуказанных рекомендаций тип кранов, переходят к I этапу их непосредственного выбора по техническим показателям.      Расчет рабочих параметров для выбора крана (I этап). Вначале определяют возможную схему его работы, т.е. положение крана относительно траншеи, а затем минимальный вылет крюка, т.е. наименьшее расстояние от оси его вращения (для кранов-трубоукладчиков - от крайней гусеницы) до оси трубопровода.

Рис. 18.2. Схема определения рабочих параметров крана при прокладке труб; а - укладка одиночных труб в трапецеидальную траншею; б - то же в тоаншею с креплениями; в - монтаж трубных секций; г -монтаж труб с транспортных средств

     Требуемый вылет крюка (Lк) монтажного крана при прокладке трубопроводов из одиночных труб в трапецеидальных траншеях по схеме, приведенной на рис. 18.2, а, равен Lк=0,5b+1,2mh+0,5Бкр где b — ширина траншеи по дну, м; 1,2mh — расстояние от основания откоса выемки до гусениц (колес или выносных опор) крана (свободная берма при этом должна быть не менее 1 м); Бкр - ширина базы крана, м; m - заложение откосов; h- глубина траншеи, м.      При монтаже трубопроводов из одиночных труб в прямоугольных траншеях с креплением (рис. 18.2, б) вылет крюка определяют также, а при монтаже их из укрупненных секций (рис. 18.2, в) (длиной 18-24 м) вылет крюка рассчитывают по формуле Lк=0,5b+1,2mh+dн+1+0,5Бкр где  - наружный диаметр труб, а для раструбных труб - диаметр раструба, м.      В глубокие траншеи, а также при слабых грунтах трубы укладывают на большом вылете крюка и, если расстояние от оси вращения крана до центра тяжести секции L2 будет меньше требуемого по расчету вылета крюка (L2 < Lк,.), то кран отодвигают в сторону от секции на расстояние не менее 1 м и подают вперед на величину L2 - Lк, производя далее монтаж на расчетном вылете крюка. Когда такое смещение невозможно, то монтаж ведут при вылете крюка, равном L2 (см. рис. 18.2, в), L2=Lк=0,5lтрс+1,5+lгаб где lтрс— длина трубной секции; 1,5 м — расстояние в свету между торцом секции и габаритом крана (по условиям безопасности); lгаб -расстояние между осью вращения крана и передним краем его ходовой части.      При монтаже труб с транспортных средств (рис. 19.2, г) вылет крюка рассчитывают по формуле, приведенной первой, и проверяют по условию Lтр=Д+1+0,5Ба       Этим одновременно определяют место установки трубовоза      В этих формулах Lтр - расстояние между осями движения крана и транспортных средств; Д - радиус поворота хвостовой части платформы крана; Ба - ширина базы транспортных средств.      Укладку изолированных плетей стальных трубопроводов в полевых условиях ведут кранами-трубоукладчиками. Исходя из условия предотвращения обрушения стенки, расстояние от бровки до крана-трубоукладчика должно составлять не менее 2 м. Необходимый вылет крюка крана-трубоукладчика при этом Lк=0,5b+mh+2      Если укладку изолированных плетей ведут стреловыми кранами, то их размещают по другую сторону от плети (считая от траншеи), а необходимый вылет крюка Lк=0,5b+mh+lбр1+dн+lбр2+0,5Бкр где lбр1, lбр2 — соответственно расстояние от бровки траншей до трубной плети и от нее до крана. Обычно первое расстояние принимают равным не менее 1 м, а второе — в пределах 0,5—1 м.      Определив требуемый вылет крюка применительно к выбранной схеме работы крана, определяют необходимую его грузоподъемность.      Грузоподъемность крана Q подсчитывают исходя из максимального груза, который должен поднять кран при требуемом вылете крюка . Он определяется массой монтируемых труб или секций (плетей).      Если уровень стоянки крана выше отметки монтажного горизонта, например при прокладке труб, то определяют высоту или, точнее, глубину опускания крюка Hоп.к с учетом обеспечения подачи трубы в траншею (см. рис. 18.2, г) Hоп.к =hз.о+hтр+a+dн+hг+s' где hз. - глубина заглубления опоры (дна) в траншее или котловане; hтр— высота транспортных средств; а - свободное пространство между бортом транспортного средства и трубой (не менее 0,5 м, а при подъеме с прокладок - не менее 0,75 м с учетом возможного прогиба трубы);  - наружный диаметр трубы; s' - длина сжатого полиспаста.      Необходимую грузоподъемность крана определяют в зависимости от массы поднимаемых труб или укрупненных секций с учетом массы грузозахватных приспособлений (захватов, траверс, скоб и т.п.). При прокладке магистральных стальных водоводов комплексно-механизированной колонной машин, включающей краны-трубоукладчики, очистную и изоляционную машины, необходимую грузоподъемность кранов-трубоукладчиков определяют путем деления общей массы поднимаемой плети (вместе с массами очистной и изоляционной машин и с учетом массы применяемых троллейных подвесок) на количество кранов-трубоукладчиков.      Для определения массы поднимаемой плети необходимы справочные данные о массе 1 п. м труб в зависимости от ее диаметра и толщины стенки, которые умножают на длину плети. Длина поднимаемого участка плети трубопровода Lпзависит от диаметра трубопровода:

Д, мм

592

720

820

1020

1220

1420

Lп, м

130

175

185

225

255

265

     Количество кранов-трубоукладчиков в колонне определяется по рекомендациям «Справочника по прокладке трубопроводов, систем водоснабжения и водоотведения» (Ростов н/Д, 2001) в зависимости от принятого способа прокладки и диаметра трубопровода. Так, при совмещенном способе прокладки, когда совмещаются процессы очистки, изоляции и укладки трубопровода в траншею, количество необходимых кранов-трубоукладчиков в колонне составит: при диаметре труб 529-820 мм - 3; 1020 мм - 4; 1220 мм - 5 и при диаметре 1420 мм - 7. При раздельном способе прокладки, когда плеть первым проходом кранов-трубоукладчиков с помощью очистной и изоляционной машин очищают и изолируют, после чего опускают обратно на берму траншеи, а затем (вторым проходом кранов) плеть с помощью мягких полотенец перекладывают с бермы на дно траншеи, количество кранов-трубоукладчиков будет меньшим. Так, при диаметре плети 529 мм кранов требуется 2; 720 - 1020 мм - 3; 1220 - 1420 - 4. Поэтому, в тех случаях, когда у строительной организации не хватает кранов-трубоукладчиков, принимают раздельный метод прокладки трубопровода.      Определив для всех видов монтажных работ, встречающихся в практике водопроводного строительства, при монтаже трубопроводов необходимые технические характеристики и выбрав по справочникам соответствующие марки кранов, проводят их технико-экономическое сравнение (II этап) и выбирают наиболее экономичный вариант крана.      Методика выбора наиболее экономичного варианта крана приведена в п. 15.3 при монтаже строительных конструкций. Она вполне может быть использована и при монтаже трубопроводов. 4. ПОДБОР ГРУЗОЗАХВАТНЫХ ПРИСПОСОБЛЕНИЙ      Для подъема, перемещения и укладки труб применяют специальные грузозахватные приспособления (рис. 18.3), для подъема длинномерных труб используют специальные траверсы (рис. 18.4, а, ж, з), а для подъема плети стального трубопровода кранами-трубоукладчиками при ее прокладке — троллейные подвески (рис. 18.4, к, л, м), позволяющие осуществлять подъем трубопровода для его очистки и изоляции при одновременном поступательном передвижении кранов-трубоукладчиков вдоль траншеи.      Выбор грузозахватных приспособлений для подъема и укладки трубопроводов осуществляют с учетом того, что приспособления должны обеспечивать необходимую грузоподъемность, прочность, надежное зацепление (строповку) трубы, недопустимость повреждений как самой трубы, так и ее изоляционного покрытия, простоту конструкции и применения. Для подъема и укладки в траншею, например, изолированного стального трубопровода следует использовать так называемые мягкие полотенца (рис. 18.4, з, и). Важнейшим показателем грузозахватных приспособлений является их грузоподъемность, которая зависит от диаметра прокладываемого трубопровода и толщины стенки. Промышленностью выпускаются грузозахватные приспособления различной грузоподъемности, что позволяет производить их правильный выбор. Для этого вначале надо определить тип необходимых приспособлений (траверса, клещевой захват, троллейные подвески или мягкие полотенца), а затем, зная требуемую грузоподъемность, подбирают их соответствующие марки. При этом целесообразно иметь также сведения о массе применяемых приспособлений (в кг), так как они нужны при определении требуемой грузоподъемности крана. Сведения о грузозахватных приспособлениях для подъема труб приведены в табл. 18.1-18.4. Таблица 18.1 Основные технические характеристики клещевых автоматических и полуавтоматических захватов серии К3

Характеристика

Марки захватов КЗ

271

351

531

721

821

1022

1223

1422

Диаметр поднимаемой трубы, мм

273

355

530

720

820

1020

1220

1420

Грузоподъемность (максимальная), т

3

4

4

7

8,5

12

16

28

Масса, кг

45

53

180

400

485

560

623

1130

Рис. 18.3. Грузозахватные приспособления, применяемые при строительстве трубопроводов: а — строповка трубы универсальным стропом с приспособлением для дистанционной расстроповки; б— полуавтоматический строп «удавка»; в— строповка трубы полуавтоматическим стропом; в, д — двух- и четырехветвевые стропы; е — шарнирный торцевой захват для асбестоцементных труб; ж — монтажная скоба для железобетонных труб; з — мягкий строп (полотенце); и — строповка мягким захватом; 1 - трос несущий; 2 — труба; 3 - тросик для выдергивания фиксатора; 4 — фиксатор-замок; 5 — щека; 6 — опорная плита; 7 — палец; 8 — скоба; 9 —захват; 70 —коуш; П — серьга; 72 — мягкие прокладки; 73—стержни- 14 — привод для вытягивания полотенца из-под трубы; 15 — монтажная 'скоба; Т6 —мягкое полотенце; 17—траверса; 18 —монтажные петли

Рис. 18.4. Траверсы, захваты и другие устройства для подъема труб: а, б— траверсы для длинномерных и асбестоцементных труб; в, г, и— полуавтоматический клещевой захват; д, в — этапы строповки труб автоматическим захватом; ж— траверса для строповки стальных труб грузоподъемностью 6 т; з— автоматический захват для труб грузоподъемностью 10 т; к, л — троллейные подвески с металлическими и резиновыми пневмобаллонными катками; м — строповка трубопровода троллейной подвеской; 1 — труба; 2 — траверса; 3 — кольцо; 4 — стропы; 5, 13 — крюки; 6, 12 — скобы; 7 — оградительные фланцы С мягкими прокладками; 8 — труба-траверса; 9 — выдвижные губки; 10 — ось; 11 — рычаги; 14— подвески; 15 — ручка; 16— штырь; 17 — автоматический захват; 18 — балка; 79 — тележка с пружиной; 20 — трособлочная система; 21 — направляющая втулка; 22 — фиксатор; 23 — опоры; 24 — стрела крана-трубоукладчика; 25 — рама; 26 — гидроцилиндр; 27 — контргруз

Таблица 18.2 Технические характеристики троллейных подвесок для неизолированного трубопровода

Характеристика

Марки подвесок

ТП371ХЛ

ТП521ХЛ

ТП822ХЛ

ТП1023ХЛ

ТП1425ХЛ

Диаметр поднимаемого трубопровода, мм

89-377

377-530

377-820

1020

1220-1420

Грузоподъемность (максимальная), т

6,3

12,5

20

35

63

Масса, кг

82

212

542

1342

1500

Таблица 18.3 Технические характеристики троллейных подвесок для непрерывной укладки изолированного трубопровода в траншею (катки полиуретановые или на авиашинах)

Характеристика

Марки подвесок

ТП-371

ТП-1021

ТП-1022

ТПП1421ХЛ

ТПП-1423

Диаметр поднимаемого трубопровода, мм

89-325

1020

1020

1220-1420

1220-1420

Грузоподъемность (максимальная), т

2

23

32

63

60

Масса, кг

205

1155

1380

1400

1860

Таблица 18.4 Технические характеристики мягких полотенец серии ПМ

Характеристика

Марки полотенец

ПМ-321

ПМ-523

ПМ-823

ПМ-1223

ПМ-1425

Диаметр поднимаемого трубопровода, мм

89-325

377-530

630-820

1020

1220-1420

Грузоподъемность (максимальная), т

8

16

25

40

63

Масса, кг

20,7

38

81

108

387

5. СПОСОБЫ ПРОКЛАДКИ ТРУБОПРОВОДОВ ПО ЗАДАННОМУ НАПРАВЛЕНИЮ И УКЛОНУ      Для укладки труб по заданному направлению и уклону применяют причалки, пришивные и ходовые визирки, отвесы и другие приспособления, а также геодезические инструменты. При этом с двух сторон котлована смежных смотровых колодцев устанавливают на столбах обноски, причем так, чтобы поперечные доски были горизонтальны и проходили через центр колодцев (рис. 18.5). Над центром колодца в доску вбивают гвоздь, сбоку к доске прибивают строго горизонтально брусок, называемый полочкой. Такую же обноску с полочкой делают и у смотрового колодца, находящегося на втором конце участка, на котором предстоит укладка труб. К забитым гвоздям крепят и натягивают проволоку (причалку), служащую в качестве направляющей при укладке труб. Поскольку натянутая причалка соответствует оси прокладываемого трубопровода, то по положению опущенного с нее отвеса проверяют правильность прокладки труб по заданному направлению. При этом необходимо, чтобы вертикальная ось конца каждой укладываемой трубы совпадала с отвесом. При несовпадении конец трубы смещают в нужном направлении краном или с помощью монтажного лома.

Рис. 18.5. Схема укладки трубопровода по заданному направлению и уклону: 1 — укладываемый трубопровод; 2 — пришивная визирка № 1; 3 — крепление траншеи; 4 — инвентарные распорки (струбцины); 5 — отвес; 6 — ходовая визирка; 7 — проволока (причалка); 8 — приямки для заделки раструбов; 9 — линия визирования; 10 — пришивная визирка № 2

     После установки обносок и полочек с помощью нивелира определяют отметки полочек на каждом конце участка (в нашем случае они равны 20,914 и 21,249 м). Отметка дна колодца № 4 равна 17,485, а колодца № 5 - 17,935 м. Следовательно, трубопровод должен быть уложен с уклоном в сторону колодца № 4, причем разность отметок равна 0,45 м. Если расстояние между колодцами равно 45 м, то уклон будет 0,01. Поскольку контролировать уклон при укладке труб по отметкам лотков колодцев на практике трудно, то над двумя соседними колодцами к обноскам по их центру крепят пришивные визирки, которые имеют ту же разность отметок, что и лотки, т.е. 0,45 м. Линия, соединяющая точки между центрами пришивных визирок, имеет тот же уклон, что и подлежащий прокладке трубопровод. Эту линию называют линией визирования. Если от нее в любой точке отложить отвесно вниз 4 м, что можно сделать с помощью ходовой визирки, то нижние точки будут определять в любом месте точное заложение лотка труб. При закреплении пришивной визирки необходимую вычисленную ее длину определяют от закрепленной на обноске полочки.      Перед укладкой труб положение обноски, полочки и пришивной внутри визирки проверяют по нивелиру. Кроме визирок при укладке труб применяют отвес, опускаемый с натянутой проволоки (причалки), с помощью которого можно точно наметить ось прокладываемого трубопровода. При больших диаметрах труб в них иногда вставляют шаблоны с отмеченной осью трубопровода, что облегчает их укладку по заданному направлению. Применяют также инвентарные переносные обноски-визирки.      Трубопроводы по заданному уклону можно укладывать также с помощью уровня. Для этого между трубой и уровнем помещают треугольный деревянный вкладыш высотой h, определяемой из соотношения h=il (где i - уклон трубопровода; l - длина оправы уровня). Если укладывать трубу с установленным на ней вкладышем и уровнем и добиться того, чтобы пузырек уровня установился в нуль-пункте, то лоток трубы будет точно соответствовать заданному уклону.      Однако более точно проложить трубопровод по заданному направлению и уклону можно при помощи луча лазерного нивелира. При этом лазерный нивелир устанавливают в начале прокладываемого участка и нацеливают луч таким образом, чтобы в точности совпадал с продольной осью трубопровода. Для этого в конце участка устанавливают соответствующий экран с нарисованными окружностями и пересечением осей. Оптическую трубу лазерного нивелира наводят на экран так, чтобы «зайчик» луча точно попал в центр концентрических окружностей, что свидетельствует о совмещении луча с осью трубопровода. Обеспечив это, нивелир закрепляют в таком положении и приступают к укладке труб. При этом перед строповкой трубы внутри ее устанавливают съемный экран с изображением на нем концентрических окружностей и пересечением осей. При укладке трубы ее центрируют таким образом, чтобы «зайчик» луча лазерного нивелира попал в пересечение осей съемного экрана. После этого трубу фиксируют в таком положении подсыпкой с боков грунтом, и затем переходят к укладке следующей трубы. При условии точного соблюдения такой технологии гарантированно обеспечивается абсолютно точная прокладка трубопровода по заданному направлению и уклону.      По сравнению с использованием способа визирок этот имеет ряд преимуществ. Во-первых, он более точный и повышает качество прокладки трубопровода, что очень важно при устройстве самотечных безнапорных коллекторов, где соблюдение проектного уклона имеет большое значение для их функционирования. Во-вторых, он практически не требует применения ручного труда, так как не нужны рабочие в траншее для переноса ходовой визирки и на поверхности для фиксирования «линии визирования». Лазерный нивелир способен удерживать луч по заданному направлению и уклону в пространстве автоматически непрерывно и в течение нужного времени, например, в течение рабочей смены.      Правильность укладки трубопровода по заданному направлению и уклону окончательно проверяют перед засыпкой труб и колодцев путем нивелирования дна лотков труб и колодцев, т.е. выполняют исполнительную съемку. Разность отметок между дном колодцев и лотком в отдельных точках трубопровода не должна отличаться от проектной более чем на строительный допуск. Прямолинейность трубопровода между колодцами проверяют с помощью зеркал, отражающих луч вдоль его оси. 6. СОВМЕЩЕННАЯ ПРОКЛАДКА ТРУБОПРОВОДОВ      Прокладка подземных сетей водопровода и канализации в пределах городской застройки может быть раздельной и совмещенной. При совмещенной прокладке нескольких трубопроводов в одной траншее (рис. 18.6, а) объемы земляных работ уменьшаются на 35-40 %, а стоимость их строительства - на 15-30 %. Прокладка сетей различного назначения в одной траншее хотя и рациональнее раздельной, но все же не свободна от существенных недостатков (трудность устранения аварий и ремонта, коррозия труб и др.).      Учитывая недостатки раздельной и совмещенной прокладки подземных сетей в грунте, в последнее время все чаще практикуют их Прокладку в проходных и непроходных каналах, коллекторах или тоннелях. Причем если прокладка в непроходных каналах и коллекторах снижает только влияние окружающей среды на срок службы трубопроводов, то прокладка их в общих проходных каналах (рис. 18.6, б) является наиболее прогрессивным решением. В этом случае монтажные работы ведутся в более благоприятных условиях, что улучшает их качество, повышает производительность труда и уровень механизации, сокращает сроки ввода сетей. Расположенные в проходных коллекторах трубопроводы различного назначения меньше подвергаются коррозии, что удлиняет сроки их службы; они не воспринимают динамических и других нагрузок от проходящего транспорта. Коммуникации доступны для ежедневного наблюдения и при возникновении дефектов имеется возможность быстрейшего их устранения. Ремонт, прокладка дополнительных или замена ранее

Рис. 18.6. Совмещенная прокладка трубопроводов: а — в одной траншее; б — в проходном канале прямоугольного сечения; в — то же, круглого сечения; 1 - теплосеть; 2 — водопровод; 3 — газопровод среднего давления; 4 — то же, низкого давления; 5 — водосток; 6 — канализация; 7 — электрокабель; 8 — телефонные кабели; 9 — электрокабели специального назначения

проложенных коммуникаций выполняется без разрытия грунта и разрушения дорожных покрытий, так как производятся через монтажные камеры и люки. Проходной коллектор, вмещающий в себе наряду с трубопроводами и другие коммуникации (кабели и т.п.), занимает площадь в 1,5-2 раза меньше требуемой при раздельной их прокладке. Стоимость строительства коммуникаций при совмещенной их прокладке в проходных коллекторах ниже прокладки их в грунте, если учесть экономию на эксплуатационных затратах.      Трубопроводы внутри канала или коллектора прокладывают через оставляемые в них через 100-200 м специальные монтажные проемы шириной 10-15 м по временным или постоянным скользящим опорам. Трубопроводы сваривают в секции и подают внутрь коллектора, постепенно удлиняя плеть до 100 м. 7. ПРОКЛАДКА ТРУБОПРОВОДОВ В ЗИМНИХ УСЛОВИЯХ      Наиболее сложными работами при. строительстве трубопроводов в зимний период являются отрывка и обратная засыпка траншей, а также нанесение изоляции и укладка трубопроводов. Поэтому зимой целесообразно выполнять такие работы, производство которых облегчается в этот период, а также те из них, осуществление которых осложняется несущественно.      Сварочные работы зимой могут успешно выполняться при проведении необходимых мероприятий, обеспечивающих высокое качество сварочных соединений в условиях низких температур. Технологические операции по нанесению на трубы изоляционного покрытия в зимних условиях практически не отличаются от операций, применяемых в обычных условиях. При этом рациональнее осуществлять нанесение изоляции на специальных трубозаготовительных базах, но иногда изоляционные работы в зимнее время выполняют непосредственно на трассе. Применяемые битумные мастики при этом должны удовлетворять повышенным требованиям, так как битумное покрытие должно сохранять пластические свойства при отрицательных температурах. Для этого в состав битумной мастики вводят пластифицируюшие добавки. Особое внимание при производстве изоляционных работ зимой обращают на необходимость тщательной очистки труб от снега и инея с помощью передвижных обогревательных устройств. В зимний период вместо горячего процесса изоляции труб битумными мастиками целесообразнее применять изоляцию их полимерными липкими лентами (холодный процесс).      Для обеспечения сохранности изоляционного покрытия, а также создания наиболее благоприятных условий для укладки труб изоляционно-укладочные работы зимой следует производить так, чтобы трубные секции или плети опускались в свежеотрытую траншею. Недопустимо оставлять зимой на длительное время изолированные трубы на берме траншеи. Поэтому комплексное выполнение сварочных и изоляционно-укладочных работ является основным условием зимней прокладки трубопроводов. Операции по подготовке траншей, укладке трубопровода и обратной засыпке при этом выполняют одну за другой без перерыва во времени. Трубопровод в траншею при отрицательных температурах следует опускать с особой осторожностью, учитывая пониженные пластические свойства изоляции и материала труб. Во избежание обвалов снега в траншею при укладке трубопровода рабочую зону предварительно очищают от снега. Неуложенный в траншею трубопровод, во избежание его примерзания к грунту на берме или вмерзания в снег, укладывают на высокие лежки (деревянные подкладки) или земляные призмы. 8. ТРЕБОВАНИЯ К КАЧЕСТВУ ПРОКЛАДКИ ТРУБОПРОВОДОВ И ОСНОВНЫЕ ПРАВИЛА ОХРАНЫ ТРУДА      Магистральные и распределительные трубопроводы систем водоснабжения часто работают при значительных напряжениях, возникающих в стенках труб из-за внутренних давлений. Поэтому любые дефекты в стыках или в теле труб представляют большую опасность. Надежность работы трубопроводов обеспечивается высоким качеством строительных работ. Качество строительства определяется степенью соответствия проложенного водопровода требованиям проекта, ТУ и СНиПа. Для их соблюдения организуют контроль качества применяемых материалов, изделий, конструкций, а также контроль соблюдения технологии строительно-монтажных работ.      Качество материалов и изделий проверяют в подготовительный период строительства трубопровода в лабораториях и на трубозаго-товительных предприятиях, сопоставляя данные сертификатов поставщиков с требованиями ГОСТа, ТУ и проекта, а при отсутствии сертификатов — лабораторными испытаниями.      Качество строительно-монтажных работ определяют путем систематического контроля качества каждой операции: соединения труб (сборки и уплотнения стыков, наложения сварных швов и т.п.), их изоляции и укладки, соблюдения проектных уклонов и др. Применяют три вида контроля: текущий, периодический и приемочный (по окончании работ). Важнейшим из них является текущий, который может быть сплошным (пооперационным) и выборочным. Применяемые при этом методы контроля качества могут быть визуальными (непосредственный осмотр выполненных работ), инструментальными (с применением инструментов и приборов) и лабораторными, требующими испытания взятых проб.      При монтаже стальных водоводов самыми ответственными операциями являются сварочные и изоляционно-укладочные. От качества сборки и сварки стыков в основном зависит эксплуатационная надежность трубопроводов, поскольку большинство аварий происходит вследствие разрывов стыков, а не самих труб. Контроль качества сварочно-монтажных работ обычно начинают с проверки условий выгрузки, перевозки и складирования труб, чтобы исключить при этом их повреждение. Затем производят пооперационный контроль по текущей проверке соблюдения установленной технологии производственного процесса. Причем вначале на трубосварочной базе и в последующем при потолочной сварке на трассе проверяют качество (состояние) труб и применяемых материалов, а потом качество сборки и сварки стыков. В заключение производят внешний осмотр сварных стыков и проверяют исправление выявленных дефектов. Пооперационным контролем определяют внешние дефекты сборки и сварки труб, а прочность сварных соединений или наличие внутренних дефектов проверяют механическими и физическими методами контроля. При необходимости осуществляют металлографические испытания образцов. Окончательную проверку прочности и герметичности (водонепроницаемости) трубопроводов производят приемочными гидравлическими и пневматическими испытаниями. Качество изоляционных покрытий трубопроводов проверяют по мере их нанесения, перед и после укладки трубопроводов в траншею. Выявленные дефекты и повреждения должны быть исправлены.      При монтаже водоводов из отдельных труб (чугунных, железобетонных, асбестоцементных и др.) очень важно обеспечить требуемое качество устройства (заделки) стыков между ними. Для обеспечения водонепроницаемости стыков соединений нельзя допускать эллипсности гладких концов труб, раструбов и муфт, а также плохого качества поверхности труб. Надо добиваться обжатия резинового кольца в щели раструбных и муфтовых соединений на 40—50 % толщины его поперечного сечения. Для заделки стыков следует применять качественные резиновые кольца, у которых удельная остаточная деформация при испытании на старение и морозоустойчивость не превышает 45 %, а гладкая, без трещин, пузырей и посторонних включений поверхность не имеет выступов и углублений размером более 1 мм.      Безопасность труда при прокладке трубопроводов обеспечивается прежде всего правильным выбором и технологически обоснованными размерами рабочих мест и их соответствующей организацией. Важное значение имеет содержание в исправности машин, механизмов, инструментов и приспособлений. Все рабочие места, а также соединяющие их транспортные зоны и крепления траншей необходимо содержать в порядке, обеспечивающем безопасность выполнения работ и перемещение машин и кранов в монтажной зоне. Во избежание обрушения стенок траншей и возникновения угрозы устойчивости крана при его работе и передвижении необходимо выдерживать установленные расстояния от него до бровки траншеи. Трубы на берме укладывают и укрепляют так, чтобы предотвратить их скатывание в траншею. Траншеи и котлованы на улицах и дворовых участках необходимо ограждать и освещать в ночное время, в местах переходов через траншеи устраивают мосты с ограждениями. Инженерные коммуникации (особенно высоковольтные кабели), пересекающие траншеи, во избежание их повреждения и возникновения аварий защищают оплеткой, коробами, подвешивают к балкам, уложенным поперек траншеи.      К работе на кране допускаются машинисты не моложе 18 лет, прошедшие специальные курс обучения, получившие соответствующее удостоверение и практическую стажировку. Кран, закрепленный за машинистом, ежегодно подвергают испытанию, дата которого указывается на кране. При соединении труб особое внимание уделяют безопасной организации рабочих мест электро- и газосварщиков; сварочные кабели защищают от повреждений, ежедневно проверяют заземление электросварочных агрегатов и свариваемых труб. При просвечивании стыков надо строго соблюдать установленную дистанцию между ампулой и техником - радиографом, который должен иметь при себе индикатор для контроля степени облучения.      При подъеме трубопровода особое внимание обращают на общую устойчивость кранов-трубоукладчиков. Если нагрузка на крюке резко возрастает и возникает угроза опрокидывания крана, подъем необходимо прекратить и трубопровод опустить на землю.      При подъеме и укладке трубопровода в траншею необходимо соблюдать следующие требования безопасности и охраны труда: следить за состоянием механизмов крана-трубоукладчика и его контрольными приборами; не поднимать груз массой, превышающей максимальную грузоподъемность крана при данном вылете крюка; поднимать и опускать трубопровод без рывков, изолированная часть при опускании в траншею не должна задевать ее стенок; при наложении полотенца на трубопровод выполнять сигналы такелажника (зацепщика), не допуская преждевременного натяжения грузовых канатов; во время опускания плети в траншею работать согласованно с машинистом других кранов-трубоукладчиков. Если машинист заметил, что другой кран перегружен, он должен немедленно подъемом стрелы или грузового крюка выровнять плеть. В случае выхода из строя одного из кранов-трубоукладчиков колонны плеть надо немедленно опустить на землю.      При опускании трубопровода в траншею запрещается кому-либо находиться под поднятой и перемещаемой плетью, между траншеей и трубопроводом, в траншее и в зоне возможного падения стрелы. При работе очистной и изоляционной машин действия машинистов трубоукладчиков и этих машин должны быть строго согласованы. Б процессе очистки трубопровода трубоукладчики должны передвигаться вдоль трубопровода при минимальном вылете крюка. Высота подъема плети должна быть также минимальной, достаточной для прохода очистной машины. Трубы и трубные секции массой, близкой к предельной грузоподъемности крана, необходимо поднимать в два приема: сначала на высоту 0,2—0,3 м, после чего проверить состояние грузозахватных устройств и тормозов крана, а затем уже на необходимую высоту.      Опускание труб в траншею с креплениями требует особой осторожности, вызванной необходимостью оградить крепления и распоры от ударов.      До начала гидравлического испытания необходимо проверить надежность работы опрессовочного агрегата или гидравлического пресса. Пневматическое испытание по сравнению с гидравлическими является более опасным из-за возможности разрыва труб, поэтому к проведению их предъявляются более строгие требования На весь период испытания устанавливается охранная зона, вход в которую при нагнетании воздуха в трубопровод и выдерживании его под давлением категорически запрещается. Ширина этой зоны принимается от 7 до 25 м (в обе стороны от оси трубопровода) в зависимости от материала и диаметра труб.      Для наблюдения за зоной организуются контрольные посты охраны из расчета одни пост на 200 м трубопровода. Применяемые для закачивания воздуха в трубопровод компрессоры и ресиверы должны быть расположены на расстоянии не менее 10 м от него и обязательно вне опасной зоны. Устранять обнаруженные дефекты, а также подтягивать болтовые соединения на трубопроводах, находящихся под давлением сжатого воздуха, категорически запрещается. Во избежание поражения рабочих в случае выбивания заглушек они должны находиться в безопасных местах или сами заглушки должны быть ограждены прочными безопасными экранами. Кроме этого, заглушки, люки, фланцевые и другие соединения на время испытаний отмечают предупредительными знаками. На период испытания трубопроводов все дороги, идущие параллельно ему на расстоянии 200 м, а также пересекающие трассу, закрывают, и движение по ним прекращается. Находящиеся в этой зоне дома должны быть освобождены от жильцов, а пастбища - от скота. Когда все эти мероприятия выполнены, созданы аварийные бригады и расставлены контрольные посты, комиссией дается указание о поднятии давления воздуха на испытываемом участке.