
- •Сборник материалов для практических занятий по курсу «Энергосбережение в теплоэнергетике и теплотехнологиях»
- •Предисловие
- •Практическое занятие №1 Общие положения энергосбережения [26]. Задача №1
- •Задача №2
- •Решение.
- •Задача №3
- •Решение.
- •Задача №4
- •Решение
- •Практическое занятие №2 Определение теплоотдачи от реальных объектов с помощью переносных приборов.
- •Теоретические основы
- •При турбулентном режиме, т.Е. Когда применяется зависимость
- •Проведение измерений
- •Радиаторы чугунные (по гост 8690-75)
- •2.3. Обработка результатов измерения
- •2.4. Вопросы для самопроверки
- •Практическое занятие №3 Измерение теплового потока через ограждения.
- •3.1Теоретические основы
- •Проведение измерений Объектом измерения является наружная стена лаборатории, окна, а также радиаторы отопления.
- •3.3Вопросы для самопроверки
- •Практическое занятие №4 Тепловые испытания котельных установок.
- •Проведение измерений необходимых ля определения параметров работы котельных установок.
- •Примерная спецификация измерений при проведении тепловых испытаний котельных установок.
- •Основные требования к проведению испытаний.
- •Практическое занятие №5 Составление теплового баланса котельного агрегата.
- •Практическое занятие №6 Упрощенная методика теплотехнических расчётов [10]
- •Значения поправочных коэффициентов в зависимости от температуры уходящих газов [9]
- •Значение величин в и со2макс (ro2макс) [9].
- •Значение низшей теплотворной способности рабочего топлива отнесенной к 1 нм3 сухих продуктов сгорания в ккал/нм3 [9]
- •Соотношения двуокиси углерода и кислорода в сухих продуктах сгорания природного газа [9].
- •Характеристики работы котла дкв 10/13 после наладки
- •Расчётное содержание кислорода
- •Значение с1 и с2
- •Практическое занятие №7 Построение графика теплового баланса котельной установки
- •Практическое занятие №8 Определение эффективности использования природного газа.
- •Определение располагаемого тепла продуктов сгорания природного газа.
- •Значение величины z для природного газа
- •Подсчет потерь тепла по двум методам: на основе теплоты сгорания и на основе жаропроизводительности.
- •Определение потерь тепла вследствие химической неполноты сгорания
- •Определение коэффициента использования природного газа.
- •Практическое занятие №9 Определение эффективности использования попутного нефтяного газа.
- •Средний состав некоторых нефтепромысловых (попутных) газов.
- •Подсчёты располагаемого тепла продуктов сгорания нефтяного газа и потери тепла.
- •Теплотехнические характеристики некоторых (попутных) нефтяных газов.
- •Состав и теплотехнические характеристики продуктов полного сгорания попутных нефтяных газов.
- •Значение величины z для попутных нефтепромысловых газов
- •Задача №10.1
- •Задача № 10.2
- •Решение.
- •Основные вопросы для самопроверки.
- •Практическое занятие №11
- •Расчет промышленных трубопроводов нефтесодержащих жидкостей с путевым обогревом.
- •Тепловой расчет трубопроводов
- •Путевой подогрев нефтепродуктов
- •Внешний путевой подогрев нефтепродукта в трубопроводе.
- •Коэффициент теплопередачи от пароспутника к воздуху
- •Методика определения удельного расхода тепловой энергии на перекачку нефти и нефтепродуктов по магистральным трубопроводам.
- •Теплоизоляционные материалы
- •Расчет паропроводов
- •Значения коэффициентов местных сопротивлений ζ
- •Компенсаторы
- •Практическое занятие №12 Технико-экономическое обоснование выбора вида топлива для котельных установок. Основные технико-эксплуатационные показатели.
- •Основные технико-экономические показатели вариантов применения различных видов топлива
- •Расход топлива
- •Практическое занятие №13. Повышение коэффициента полезного действия котельных.
- •Снижение потерь теплоты при механической и химической неполноте сгорания топлива.
- •Дымовая труба и «тяга»
- •Снижение потерь от механической неполноты горения твердого топлива.
- •Снижение потерь теплоты в окружающую среду.
- •Практическое занятие №14. Применение газовых поверстных воздухоподогревателей.
- •Воздухонагреватель гпв – 100
- •Практическое занятие №15 Энергосбережение в системе отопления при применении экономичного графика подачи теплоносителя.
- •Результаты расчетов экономичного графика подачи теплоносителя
- •Практическое занятие №16 Энергосбережение в системе отопления при улучшении теплозащитных свойств ограждающих конструкций здания
- •Практическое занятие №17 Энергосбережение при утилизации теплоты вентиляционных выбросов в рекуперативном теплообменнике.
- •Практическое занятие №18 Энергосбережение при совместном применении общеобменной и местной вентиляции.
- •Практическое занятие №19. Энергосбережение при применении воздушных завес
- •Значения а и α в формуле (19.1) при определении расхода наружного воздуха, поступающего через ворота производственного помещения при отсутствии воздушной завесы [21]
- •Результаты расчета при отсутствии завесы
- •Практическое занятие №20 Энергосбережение при применении рециркуляции в центральных системах кондиционирования воздуха
- •Практическое занятие № 21. Энергосбережение при применении частного регулирования производительности по воздуху вентиляторов систем вентиляции и кондиционирования воздуха.
- •Практическое занятие №22. Некоторые ориентировочные сведения о результатах, полученных при эксплуатации теплоэнергетического оборудования.
- •Литература.
Определение коэффициента использования природного газа.
Коэффициент использования природного газа можно установить по формуле
(8.8)
Подсчёт1:Состав продуктов сгорания природного газа по данным газового анализа, %: 8,5СО2; 5,5О2; 0,3СО; 0,2Н2; 0,1СН4; 85,4N2. Температура уходящих газов 2000С. Температура воздуха 200С. Подсчитать коэффициент использованного топлива.
Потери тепла с уходящими газами по формуле (8.4) равны
(8.8)
Коэффициент использования природного газа в установке по формуле (8.8) равен
Практическое занятие №9 Определение эффективности использования попутного нефтяного газа.
Попутные нефтяные (нефтепромысловые) газы
Попутные нефтяные газы, как и природный газ, состоят из метана и его гомологов. Однако в нефтяных газах содержатся меньше метана и значительно больше этана, пропана, бутана и пентана. Поэтому теплота сгорания углеводородной массы нефтяных газов значительно выше, чем природных газов.
Содержание азота в нефтяных газах значительно колеблется. Помимо азота в них содержится обычно небольшое количество двуокиси углерода, а нефтяном газе, добываемом в месторождениях с сернистой нефтью, отмечается присутствие также сероводород.
Состав нефтяных газов некоторых месторождений РФ приведен в
таблице 9.1
Средний состав некоторых нефтепромысловых (попутных) газов.
Таблица 9.1
Месторож дение |
Горизонт |
Состав газа % |
Плотность по воздуху |
||||||||
СН4 |
С2Н6 |
С3Н8 |
С4Н10 |
С5Н12 |
С6Н14 |
Н2S |
CO2 |
N2 |
|||
Туймазинское |
Угленосный |
30,0 |
13,0 |
14,3 |
6,3 |
3,3 |
1,4 |
0,7 |
1,0 |
30,0 |
1,08 |
// |
Девонский |
39,5 |
20,0 |
18,5 |
7,7 |
2,8 |
1,4 |
- |
0,1 |
10,0 |
1,08 |
Мухановское |
Кунгурский |
57,5 |
15,0 |
11,0 |
8,0 |
4,0 |
- |
- |
1,5 |
3,0 |
0,96 |
// |
Девонский |
42,7 |
20,0 |
19,5 |
9,5 |
2,9 |
- |
- |
0,2 |
5,2 |
1,07 |
Ромашкинское |
// |
40,0 |
19,5 |
18,0 |
7,5 |
3,8 |
1,1 |
- |
0,1 |
10,0 |
1,10 |
Шугуровское |
Угленосный |
23,7 |
12,0 |
10,0 |
2,8 |
1,5 |
1,0 |
2,0 |
1,0 |
46,0 |
1,02 |
До настоящего времени не весь нефтяной газ полностью используется, и часть его сжигают в факелах. При этом теряется ценное топливо, и загрязняется воздушный бассейн.
В «Основных направлениях развития народного хозяйства» предусмотрено значительно сократить потери нефтяного газа и обеспечить его использование.
Содержащиеся в нефтяном газе углеводороды от С2Н6 до С5Н12 являются ценным сырьём для химической промышленности.
Неоднородность углеводородного состава нефтяных газов и различное содержание азота обусловливают значительное различие в их теплоте сгорания. Но, поскольку с увеличением теплоты сгорания соответственно возрастает и объём продуктов сгорания, энтальпии 1м3 продуктов сгорания нефтяных газов, их жаропроизводительность и величина RO2max меняется весьма малой степени. Данные о составе некоторых нефтяных газов и их теплотехнических характеристик, приведенные в таблицах 9.1 и 9.2 иллюстрируют указанное положение.
Так, теплота сгорания газа Туймазинского месторождения (Башкортостан) колеблется от 11200 до 14200 ккал/м3, т.е. в пределах 27% по отношению к наименьшей теплоте сгорания газа, а жаропроизводительность туймазинского газа колеблется от 2010 до 20500С, т.е. в пределах 2% по отношению к наименьшей жаропроизводительности газа. Энтальпия, т.е. теплота сгорания, отнесённая к 1м3 сухих продуктов сгорания (в стехиометрическом объёме воздуха) Р, колеблется от 970 до 1000ккал/м3, т.е. в пределах 3%, или в 9 раз меньше колебания теплоты сгорания Qн.
Теплота сгорания Мухановского газа (Самарско-Бугурусланский нефтяной район) колеблется от 13240 до 14650ккал/м3, т.е. в пределах 10% по отношению к наименьшей теплоте сгорания газа. Теплота сгорания, отнесенная к 1м3 сухих продуктов горения, колеблется от 995 до 1000ккал/м3, т.е. в пределах 0,5% или 20 раз меньше колебания теплоты сгорания газа Qн. Теплота сгорания попутного газа Шугуровского месторождения, содержащего 46% N2, на 46% теплоты сгорания газа Ромашкинского месторождения, однако энтальпия 1м3 сухих продуктов сгорания Шугуровского газа ниже только на 4%, а жаропроизводительность на 5%.
В соответствии с этим подсчётом располагаемого тепла и потерь тепла с уходящими газами вследствие неполноты сгорания можно выполнять на основе рассмотренных обобщенных характеристик продуктов сгорания.
В таблице 8.3. приведены состав продуктов полного сгорания нефтепромысловых газов, содержащих около 13% RO2max при различных коэффициентах избытка воздуха ( ) и разбавления продуктов сгорания (h), а также калориметрические температуры горения (tкал).