- •Зарождение вычислительных сетей. Мейнфреймы и многотерминальные системы. Преимущества и недостатки.
- •Зарождение вычислительных сетей. Многопроцессорные и многомашинные системы. Основные различия. Преимущества перед мейнфреймами. Область применения.
- •Зарождение вычислительных сетей. Клиент-серверная платформа. Область применения. Различие между многотерминальными системами.
- •Открытые системы. Принцип декомпозиции. Многоуровневый подход.
- •Открытые системы. Специфика многоуровневой реализации сетевого взаимодействия.
- •Открытые системы. Понятия «протокол», «интерфейс».
- •Модель osi/iso. Основные понятия и определения
- •М одель osi. Уровни модели osi. Функции и назначения первых 3-х уровней.
- •Модель osi. Уровни модели osi. Функции и назначения последних 4-х уровней.
- •Физический уровень. Функции и задачи. Структура коаксиального кабеля и неэкранированной витой пары.
- •Физический уровень. Функции и задачи. Структура экранированной витой пары и оптоволоконного кабеля. Структура волокна.
- •Физический уровень. Функции и задачи. Понятие mac-адреса и область его применения.
- •Сетевые устройства. Основные понятия и определения. Повторитель и мост: определение, назначение, область применения.
- •Сетевые устройства. Основные понятия и определения. Концентратор и коммутатор: определение, назначение, область применения.
- •Сетевые устройства. Основные понятия и определения. Маршрутизатор: определение, назначение, область применения, пример работы.
- •Сетевые топологии. Основные понятия. Преимущества и недостатки полносвязной и ячеистой топологии.
- •Сетевые топологии. Основные понятия. Преимущества и недостатки иерархической и с общей шиной топологии.
- •Сетевые топологии. Основные понятия. Преимущества и недостатки «кольца» и «звезды» топологии.
- •Ethernet. Основные понятия и определения. Физический уровень.
- •Ethernet. Основные понятия и определения. Принцип работы
- •Ethernet. Основные понятия и определения. Метод доступа к среде.
- •Методы передачи дискретных данных на физическом уровне. Логическое кодирование. Скремблирование.
- •Кодирование в локальных сетях. Обоснование необходимости применения кодирования. Код nrz: преимущества, недостатки, описание работы.
- •Кодирование в локальных сетях. Обоснование необходимости применения кодирования. Код rz: преимущества, недостатки, описание работы.
- •Кодирование в локальных сетях. Обоснование необходимости применения кодирования. Код Манчестер-II: преимущества, недостатки, описание работы.
- •Кодирование в локальных сетях. Обоснование необходимости применения кодирования. Потенциальный код 2b1q: преимущества, недостатки, описание работы.
- •Кодирование в локальных сетях. Обоснование необходимости использования аналогового кодирования. Основные типы аналоговых кодов.
- •Цифроаналоговые преобразователи (цап) и ацп. Асинхронный и синхронный способ передачи.
- •Понятие ip-адресации. Классы ip-адресов.
- •Понятие Маска подсети. Определение. Пример применения.
- •Линии связи. Типы линий связи. Структура линий связи.
- •Линии связи. Аппаратура линий связи.
- •Характеристики линий связи. Спектральный анализ на линии связи. Амплитудно-частотная характеристика.
- •Характеристики линий связи. Полоса пропускания. Затухание.
- •Характеристики линии связи. Пропускная способность, связь с полосой пропускания.
- •Характеристики линии связи. Помехоустойчивость и достоверность.
- •Стандарты кабелей. Характеристики кабелей, оговариваемые в стандартах.
- •Методы коммутации. Краткие характеристики.
- •Метод коммутации каналов. Основные определения, способы разделения каналов.
- •Метод коммутации пакетов и сообщений. Основные понятия, сходства и различия между двумя методами. Виртуальные каналы при коммутации пакетов.
- •С тек протоколов tcp/ip. Структура стека tcp/ip. Краткая характеристика протоколов.
- •Служба электронной почты. Принципы работы, структура. Протоколы pop3 и smtp.
- •Служба электронной почты. Принципы работы, структура. Протоколы imap4 и smtp.
- •Защита локальной сети. Принципы построения защиты. Возможные внешние угрозы.
- •Защита локальной сети. Принципы построения защиты. Возможные внутренние угрозы.
- •Алгоритмы маршрутизации. Основные понятия, виды алгоритмов.
- •Внутренний протокол маршрутизации ospf. Таблица маршрутизации, ограничения протокола ospf, принцип работы.
- •Внутренний протокол маршрутизации rip. Таблица маршрутизации, ограничения протокола rip, принцип работы.
- •Процесс построения таблицы маршрутизации
- •Область применения протокола rip. Преимущество протокола rip2 перед протоколом rip. Формат сообщения протокола rip2.
- •Особенности работы протокола rip. Недостатки протокола.
- •Протоколы внешней маршрутизации. Понятие автономной системы.
- •Предоставление сервиса доступа к глобальной сети с использованием технологи nat и proxy
- •Технология передачи голосового трафика по ip-сетям (VoIp). Основные понятия, структура.
- •Технология передачи голосового трафика по ip-сетям (VoIp). Компоненты сети.
- •Методы физического доступа к среде в локальных сетях
- •Беспроводной доступ. Область применения. Основная классификация.
- •Беспроводной доступ для локальных сетей. Основные стандарты и их характеристики.
- •Беспроводной доступ для частных сетей. Основные стандарты и их характеристики.
- •Беспроводной доступ для сетей формата города. Основные стандарты и их характеристики.
- •Управление сетями. Основные принципы tmn. Основные понятия и определения.
- •Управление сетями. Иерархия протоколов tmn.
- •Управление сетями. Существующие методы мониторинга.
- •Управление сетями. Применение систем обнаружения вторжения.
Внутренний протокол маршрутизации rip. Таблица маршрутизации, ограничения протокола rip, принцип работы.
Протокол RIP (Routing Information Protocol) является внутренним протоколом маршрутизации дистанционно-векторного типа, он представляет собой один из наиболее ранних протоколов обмена маршрутной информацией и до сих пор чрезвычайно распространен в вычислительных сетях ввиду простоты реализации. Кроме версии RIP для сетей TCP/IP существует также версия RIP для сетей IPX/SPX компании Novell.
Этот протокол маршрутизации предназначен для сравнительно небольших и относительно однородных сетей. Протокол разработан в университете Калифорнии (Беркли), базируется на разработках фирмы Ксерокс и реализует те же принципы, что и программа маршрутизации routed, используемая в ОC UNIX (4BSD). Маршрут здесь характеризуется вектором расстояния до места назначения. Предполагается, что каждый маршрутизатор является отправной точкой нескольких маршрутов до сетей, с которыми он связан.
Преимуществом протокола RIP является его вычислительная простота и простота конфигурирования, а недостатками – увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.
Для IP имеются две версии протокола RIP: первая и вторая.
В качестве расстояния до сети стандарты протокола RIP допускают различные виды метрик: хопы, метрики, учитывающие пропускную способность, вносимые задержки и надежность сетей (то есть соответствующие признакам D, Т и R в поле «Качество сервиса» IP-пакета), а также любые комбинации этих метрик. Метрика должна обладать свойством аддитивности - метрика составного пути должна быть равна сумме метрик составляющих этого пути. В большинстве реализации RIP используется простейшая метрика - количество хопов, то есть количество промежуточных маршрутизаторов, которые нужно преодолеть пакету до сети назначения.
Процесс построения таблицы маршрутизации
Использование протокола RIP целесообразно в сетях, самый длинный путь в которых составляет не более 15 переходов (hops). Данное ограничение определяется способом вычисления маршрута, который принят в данном алгоритме и не может быть преодолено.
Принцип работы RIP состоит в том, что маршрутизатор каждые 30 секунд посылает широковещательно свою таблицу маршрутизации, получивший его маршрутизатор сравнивает ее со своей и добавляет записи, о сетях которых у него нет, либо заменяет существующую сеть, если в обновлении маршрут к этой сети имеет меньшую метрику. Максимальное количество прыжков, разрешенное в RIP — 15 (метрика 16 означает «бесконечно большую метрику»). RIP работает на прикладном уровне стека TCP/IP, используя UDP порт 520.
Область применения протокола rip. Преимущество протокола rip2 перед протоколом rip. Формат сообщения протокола rip2.
Протокол RIP не обеспечивает решение всех возможных проблем, которые могут возникнуть в процессе определения маршрута в сетях передачи данных. Как уже упоминалось выше, в первую очередь он предназначен для использования в качестве IGP в гомогенных сетях небольшого размера. Кроме того, использование данного протокола приводит к появлению специфических ограничений на параметры сети, в которой он может быть использован.
Для IP имеются две версии протокола RIP: первая и вторая. Протокол RIPvl не поддерживает масок, то есть он распространяет между маршрутизаторами только информацию о номерах сетей и расстояниях до них, а информацию о масках этих сетей не распространяет, считая, что все адреса принадлежат к стандартными классам А, В или С. Протокол RIPv2 передает информацию о масках сетей, поэтому он в большей степени соответствует требованиям сегодняшнего дня. Так как при построении таблиц маршрутизации работа версии 2 принципиально не отличается от версии 1, то в дальнейшем для упрощения записей будет описываться работа первой версии.
RIP v.1 не поддерживает маски, т.е. распространяет между маршрутизаторами информацию только о номерах сетей и расстояниях до них, но не о масках этих сетей, считая, что все адреса принадлежат к стандартным классам A, B или С. RIP v.2 передает данные о масках сетей, поэтому он в большей степени соответствует современным требованиям.
Формат сообщения протокола RIP2.
Вторая версия протокола определяет полезные расширения первой, такие как поддержка CIDR, выполнение аутентификации, поддержка подсетей и групповой передачи. На рисунке(рис.7) приведен формат сообщения второй версии протокола RIP IP.
Сообщение первой версии протокола содержит нулевые поля. Данные поля предостовляют место для расширений, вносимых второй версией. Протокол RIP-2 IP наследует все поля первой версии, добавляя следующие:
Поле "Домен маршрутизации" используется вместе с полем "Следующий переход" для позволения нескольким автономным системам разделять одну физическую среду передачи.
Поле "Маска подсети" позволяет выполнять маршрутизацию в сформированной структуре подсетей.
Поле "Метка маршрута" предназначено для сигнализации внешних маршрутов и используется протоколами политики маршрутизации(EGP или BGP).
Сообщения протокола RIP-2 IP посылаются с версией равной 2. Однако при получении такого сообщения маршрутизатором поддерживающим протокол RIP-1 IP будет просто игнорировать любые поля, которые длжны содержать нули в первой версии. Следовательно, он будет корректно обрабатывать все записи, которые не используют расширения протокола RIP-2 IP.
