
- •1.Философия науки как философское направление и как современная философская дисциплина.
- •2.Основная проблематика направлений философии науки хх века.
- •3.Соотношение философии науки, истории науки, науковедения, наукометрии и социологии науки.
- •Раздел I. Общефилософский анализ науки.
- •Тема 1. Наука как социальное явление.
- •1.1 Исторический анализ формирования науки.
- •1.Проблема исторического возраста науки.
- •3.Функции науки в общественной жизни.
- •4.Модели развития науки.
- •1.2. Наука как знание, деятельность и социальный институт.
- •1.Анализ науки как знания.
- •2.Наука как специфический вид деятельности.
- •3.Наука как социальный институт.
- •1.Исторические варианты попыток классификации науки.
- •2.Современная классификация науки и проблемы, связанные с этим вопросом.
- •1.4. Наука и эзотеризм.
- •2.Вненаучное знание и его формы.
- •Тема 2. Наука в системе духовной жизни общества.
- •Тема 3. Проблема отношения науки и техники.
- •Раздел II. Теоретико-методологический анализ науки.
- •Тема 1. Гносеологические аспекты научного познания.
- •1.Понятия «субъект» и «объект» познания.
- •2.Проблема истины в процессе познания.
- •3.Истина и заблуждение. Истина и ложь.
- •4.Критерий истины.
- •Тема 2. Методологические аспекты научного познания.
- •1.Определение понятий «методология», «метод» и принципы классификации методов.
- •2.Философские методы исследования.
- •3.Общенаучные методы эмпирического уровня.
- •3.Общенаучные методы теоретического познания.
- •4.Общенаучные методы, применяемые как на эмпирическом, так и теоретическом уровнях научного познания.
- •1.Физическое моделирование.
- •2.Идеальное (мысленное) моделирование.
- •3.Символическое (знаковое) моделирование.
- •6.Численное моделирование на электронных вычислительных машинах (эвм).
- •5.Общелогические методы познания.
- •2.2. Формы научного познания.
- •1.Определение понятия формы научного познания.
- •3. Формы теоретического уровня научного познания: научная проблема, идея, гипотеза, теория.
- •7.Различают также естественнонаучные и технические теории.
- •Раздел III. Философско-методологический анализ социального познания.
- •Тема I. Общефилософский анализ социального познания.
- •Представления о социальном познании в истории философской мысли.
- •1.2.Определение социальной реальности.
- •1.3.Проблема формирования и классификации социально-гуманитарных наук.
- •Тема 2. Специфика социального познания.
- •Тема 3. Гносеологические проблемы социального познания.
- •3.1.Проблема текста в социально-гуманитарных науках.
- •3.2.Понимание и объяснение как гносеологические процедуры.
- •3.4. Проблема истины в социальном познании. Истина и идеология.
- •Тема 4. Теоретико-методологические проблемы социального познания.
- •4.1. Характеристика эмпирического уровня социального познания.
- •4.2.Теоретический уровень социального познания, его особенности, проблемность толкования.
- •4.3. Современное состояние социальной теории: проблемы и перспективы.
- •Раздел IV. Модели науки и концепции научного
- •Тема 1. Проблемы философии науки в эволюции позитивизма
- •1.1.Общая характеристика философии позитивизма.
- •1.2.Трактовка науки в раннем позитивизме.
- •1.3. Концепция науки эмпириокритицизма.
- •1.4. Концепция науки в неопозитивизме.
- •1.5. Концепции философии науки в постпозитивизме.
- •1.Критический рационализм к. Поппера.
- •2.Концепция исследовательских программ и. Лакатоса.
- •4.Концепция неявного знания м. Полани.
- •5.Тематический анализ науки д. Холтона.
- •Тема 2. Эволюционная эпистемология и эволюционная концепция Стивена Тулмина.
- •Тема 3. Методологические аспекты герменевтики.
- •Тема 4. Методологические аспекты структурализма.
- •Тема 5. Постструктурализм.
- •Раздел V. История развития науки.
- •Тема 1. Возникновение античной науки.
- •Тема 2. Средневековая наука.
- •Тема 3. Наука эпохи Возрождения.
- •Тема 4. Наука Нового времени.
- •Тема 5. Особенности развития науки в 19 веке. Диалектизация естествознания.
- •Тема 6. Формирование неклассической науки и новой картины мира.
- •Тема 7. Общая картина эволюционного развития науки.
- •1.Понятие научной картины мира.
- •2.Виды научной рациональности: от классической к постнеклассической рациональности.
- •Тема 8. Актуальные проблемы науки ххi века.
- •1.Философия науки как философское направление и как современная философская дисциплина. 3
- •2.Основная проблематика направлений философии науки хх века. 4
- •Раздел I. Общефилософский анализ науки. 9
- •Тема 1. Наука как социальное явление. 9
- •1.Понятие научной картины мира. 304
- •2.Виды научной рациональности: от классической к постнеклассической рациональности. 306
Тема 4. Наука Нового времени.
Новое время, начало которого относят к 17 веку и начинают отчет с имени Френсиса Бэкона (1561-1626), стало временем, когда наука приобретает доминирующее значение в постижении бытия. Именно этот английский философ-материалист уловил, что «знание – сила», что единое ранее знание, именуемое философией, в силу экономических, политических и иных причин начинает объективно расчленяться на собственно философию и науку. Его считают основателем философии Нового времени и всего экспериментирующего естествознания. Свою научную программу Бэкон назвал «Великое восстановление наук» и для целей ее осуществления разработал метод индукции. Прогресс науки, по его мнению, возможен на эмпирическом пути: от наблюдения, анализа, классификации, и сравнения к выводу законов и их опытной проверке. Рациональным, силлогистическим выводам он не доверял, так как всецело олицетворял их со средневековой схоластикой.
Почву для постройки новой рациональной науки создал другой основатель философии Нового времени – Рене Декарт (1596-1650). Им был разработан метод дедукции, который опирался на ясные и отчетливые идеи сознания, т. е. прочным основанием метода был сам человеческий разум. С Декарта начинается поклонение человеческому разуму как высшей инстанции познания. Среди многих достижений ученого и философа особую роль играет создание аналитической геометрии. Она, по его мнению, должна была стать универсальной наукой, тождественной методу. Создав систему координат и введя представление об одновременной взаимозависимости двух величин – функции и аргумента – Декарт внес в математику принцип движения. С этого момента математика становится рациональным приемом, обеспечивающим формализацию исследуемого явления, появилась возможность любую реальность представлять количественно.
В своих взглядах на природу (материю) Декарт придерживался материалистической позиции, хотя в целом по своим философским взглядам был дуалист. Атрибутом, т. е. неотъемлемым свойством материи, с точки зрения Декарта, является пространство. Оно непрерывно, но делимо до бесконечности и беспредельно. Поэтому космос у него беспределен. Но идею Бруно о множественности миров Декарт не разделял.
Философ внес свой вклад в учение о движении. Движение Декарт понимает как относительное: нет абсолютного покоя, тело может двигаться относительно одних тел и покоится относительно других. Источником движения является Бог – он перводвигатель.
Декарт дает первую формулировку принципу инерции: тело, раз начав двигаться, продолжает это движение и никогда само собой не останавливается.
Второй закон движения, предложенный Декартом, утверждает, что всякое тело стремится продолжить свое движение по прямой.
Третий закон определял принцип движения сталкивающихся тел.
В дальнейшем первый и второй законы движения признавались в науке Нового времени, третий подвергся резкой критике. Гарантом первого и второго законов движения, согласно Декарту, является Бог.
Декарт был создателем механистической картины мира. До Декарта никогда еще не высказывалась мысль о том, что природа есть сложная система механизмов, в число которых попадают и животные, и даже тело человека. В этом смысле Бог – Великий Механик, владеющий бесконечным арсеналом средств для построения машины мира. Человеку не дано постичь какими именно средствами пользовался Бог, строя этот мир. Создавая науку, человек конструирует мир так, чтобы между его представлениями и реальным миром имелось сходство. Вот поэтому предлагаемый в науке вариант объяснения мира носит гипотетический характер.
Задача науки, по Декарту, вывести объяснение всех явлений природы из полученных начал, в которых нельзя усомниться. Эти начала Декарт называет «врожденными идеями». Они гарантированы Богом и открываются философу интуитивно. За врожденные принципы, из которых потом путем дедукции выводится все научное знание, Декарта упрекали в априорном характере научных положений.
Сильное впечатление на современников произвела космогоническая гипотеза Декарта – теория вихрей, согласно которой мировое пространство заполнено особым легким, подвижным веществом, способным образовывать гигантские вихри. Космогоническая гипотеза позднее была отвергнута, но заложенная в ней идея развития Вселенной получила в дальнейшем последователей, таких как Кант, Лаплас и др. В целом же вклад Декарта в науку неоценим. Ему человечество обязано введением системы координат, алгебраических обозначений, понятия рефлекса в биологии, созданием аналитической геометрии, открытием законов механики.
Своими научными достижениями Декарт во многом был обязан Галилео Галилею (1564-1642), на труды которого он опирался. Галилея можно по праву назвать первым ученым Нового времени, стоявшим у истоков формировавшейся науки. Родился он в г. Пизе в семье небогатого дворянина в тот самый день 18 февраля, когда умер великий Микельанжело. В 1581 г. Галилей стал студентом Пизанского университета медицинского факультета. Медицина его не очень увлекала и он самостоятельно изучал труды Аристотеля ,Евклида, Архимеда, Витрувия и других античных ученых. Будучи студентом университета, он в 1583 г., наблюдая за раскачиванием лампады в Пизанском соборе, открыл закон маятника, согласно которому период колебания маятника не зависит от его массы и амплитуды колебаний. Позднее Галилей доказал зависимость периода колебаний от длины маятника. А в 1586 г. студент Галилей сделал свое первое изобретение – гидростатические весы, позволявшие точно измерять удельный вес. Это изобретение сделало его известным среди итальянских ученых.
В университете Галилей проучился 6 лет, но за не имением средств курс так и не закончил. Однако благодаря своей известности он получил в 1589 г. должность профессора по кафедре математики в Пизанском университете, а в 1592 г. – в Падуанском университете, где плодотворно работал 18 лет. К падуанскому периоду относятся изобретения термоскопа, исследование магнитов, открытие законов движения, использование зрительной трубы в астрономии и тем самым изобретение телескопа. В 1609 г. он построил свой первый телескоп, а затем и телескоп с 32-кратным увеличением, позволивший ему сделать ряд величайших открытий в астрономии.
Изобретение Галилеем телескопа позволило ему убедиться в правильности идеи Коперника. Он увидел, что Луна не является идеальной сферой, что она покрыта горами, а у Юпитера есть спутники (из 13 спутников он открыл 4), которые вращаются вокруг него и являют собой миниатюрную модель устройства Вселенной по Копернику. Галилей обнаружил, что Млечный Путь состоит из огромного скопления звезд, хотя глазу кажется светлой полосой. Результаты своих астрономических открытий Галилей опубликовал в «Звездном вестнике», книге сделавшей ему мировую известность.
С 1609 г. ему представляется возможность сосредоточиться только на научной работе. Он поселился близ Флоренции и в течении 22 лет активно работал над главным своим трудом – «Диалог о двух главнейших системах мира - Птолемеевой и Коперниковой». Книга вышла в свет в 1632 г. во Флоренции. В диалоге принимает участие 3 человека, два из них – Филиппо Сальвиати и Джован Франческо Сагредо – друзья Галилея, реальные люди, третий – Симпличио – вымышленное имя человека, защищающего философию перепатетиков. Сальвиати выступает от лица Галилея и высказывает идеи последнего, а Сагредо представляет образованного человека, который пытается во всем разобраться. Книга написана как собеседование, длившееся в течение 4-х дней. Каждому дню посвящена отдельная глава.
В первой главе, соответствующей первому дню беседы, обсуждается возможность неизменности небесного мира. Галилей ссылкой на собственные астрономические открытия отрицает постоянство мира. Мир меняется, возникают новые звезды и т. д.
Во второй день беседы обсуждаются вопросы движения Земли. Здесь Галилей выдвигает базовые принципы механики – принцип инерции и принцип относительности. Принцип инерции Галилеем сформулирован по отношению к телу, движущемуся по неограниченной горизонтальной плоскости. Принцип относительности сформулирован на примере корабля, находящегося в покое и движении, когда наблюдаются процессы движения в его трюме. В современной формулировке принцип относительности гласит, что все процессы в природе протекают одинаково в любой инерциальной системе отсчета, т. е. независимо от того, неподвижна система или совершает равномерное и прямолинейное движение. Поскольку все движения, протекающие на Земле, совершаются вместе с движением самой Земли, для наблюдателя все процессы протекают так, как если бы Земля была неподвижна.
Третий день дискуссии и соответственно третья глава книги посвящены открытой в 1604 г. новой звезде и возможности гелиоцентрического устройства мира, годичного вращения Земли.
В главе «День четвертый» обсуждаются причины морских приливов и отливов. Галилей ошибочно считал, что эти явления доказывают движение Земли. Гипотезу Кеплера о лунном и солнечном притяжении как причинах приливов и отливов Галилей не принимал.
Не смотря на то, что издание книги было церковью разрешено и даже посвящено Папе, спустя 6 месяцев против Галилея начались гонения. Инквизиция устроила над ним суд и в результате он письменно признался, что многие места книги неудачны и что она укрепляет ложные мнения. 22 июня 1633 г. в церкви Св. Марии Галилей публично покаялся и отрицал, что разделяет учение Коперника. После этого он был помещен под домашний арест и последние годы жизни посвятил изучению вопросов динамики и статики. Итогом исследования стала работа 1638 г. «Беседы и математические доказательства, касающиеся двух новых отраслей науки». Речь шла о динамике и сопротивлении материалов.
Подводя итоги научной деятельности Галилея следует отметить его огромные заслуги в создании нового метода научного мышления, заложившего основания нового мировоззрения. Основными чертами галилеевского метода научного мышления, воспринятого Новым временем, стали:
1)математизация научных исследований. Галилей считал, что книга природы «написана на языке математики» и что «невозможна настоящая философия без геометрии».
2)введение технического эксперимента (опыта) как метода исследования. Эксперимент должен быть очищен от случайных обстоятельств. Он не иллюстрация, а метод, который по возможности должен быть описан математически.
3)использование мысленного эксперимента как развитие технического эксперимента. Например, Галилей, проводя эксперименты предполагал возможность неких идеальных условий, когда полностью отсутствуют силы трения и т. п.
4)проведение количественного анализа. Для этих целей Галилей сам изобрел или усовершенствовал ряд измерительных приборов – термоскоп, барометр и др.
Благодаря новому научному мышлению, предложенному Галилеем, появилось математическое естествознание и была разрушена научная парадигма, созданная Аристотелем около 2-х тысяч лет назад.
В анализе природы Галилей отдавал предпочтение двум основным методам:
во-первых, аналитическому – выделяющему элементы реальности, недоступные непосредственному восприятию с использованием абстрагирования, идеализаций, средств математики.
Во-вторых, синтетически-дедуктивному – состоящему в математической обработке данных опыта, на основе которых вырабатываются теоретические схемы, применяемые для интерпретации и объяснения явлений.
Современником Галилея и одним из создателей небесной механики был выдающийся астроном Иоганн Кеплер (1571-1630), труды которого также подтверждали и развивали теорию Коперника. После окончания университета Кеплер работал профессором математики и морали в училище г. Граца. В 1600 г. по приглашению Тихо Браге Кеплер переехал в г. Прагу и вскоре после смерти Браге занял место астронома при дворе Рудольфа II. В наследство от Тихо Браге Кеплер получил все реестры его обсерватории и мог свободно пользоваться собранными датским ученым наблюдениями. Благодаря богатому эмпирическому материалу Кеплеру удалось открыть законы движения планет.
Самым важным сочинением Кеплера по астрономии явилась работа «Новая астрономия, или небесная физика с комментариями на движение планеты Марс по наблюдениям Тихо Браге» (1609 г.). В сочинении изложены два закона движения планет, которые носят его имя.
Первый закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
Второй закон: радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени покрывает равные площади.
Третий закон: квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.
Третий закон был обнародован Кеплером в 1619 г. в работе «Гармония мира».
Помимо открытых законов Кеплер в течение 20 лет работал над составлением «Рудольфовых таблиц», названных так в честь императора Рудольфа II. Эти таблицы начал составлять еще Тихо Браге. Кеплер провел основную часть работы, используя наблюдения датского астронома. «Рудольфовы таблицы» использовались астрономами и моряками вплоть до 19 века. Они были напечатаны в Ульме в 1627 г., через 26 лет после смерти Тихо Браге. Это были первые таблицы, в которых использовались логарифмы.
Помимо астрономии Кеплер интересовался вопросами оптики и посвятил этому специальный труд «Диоптрика». В этой работе он дал теорию зрительного восприятия, теорию коррекции зрения. Кеплер предложил конструкцию зрительной трубы с окуляром в виде положительной (выпуклой) линзы, схема которой носит его имя – «зрительная труба Кеплера». Телескопическую систему с окуляром в виде отрицательного оптического компонента называют «зрительной трубой Галилея».
В работах по оптике Кеплера были даны основы современной геометрической оптики. В ней не хватало одного важного звена – закона преломления. Современники не очень ценили и понимали Кеплера и только Исаак Ньютон смог понять и по достоинству оценить его открытия. Именно от законов Кеплера отталкивался Ньютон, когда открыл закон всемирного тяготения.
Значительные успехи в 17 в. были в области экспериментирующего естествознания по исследованию гидростатики и пневматики. Проводимые опыты с «пустотой» привели к открытию газовых законов, измерению атмосферного давления, изобретению и совершенствованию воздушных (вакуумных) насосов. Торичелли (1608-1647), известный итальянский ученый, помощник Галилея в последние годы его жизни, положил начало целому ряду исследований по гидростатике и пневматике. Его имя стало бессмертным в связи с опытом 1644 г. по измерению атмосферного давления Они состояли в следующем: запаянную с одного конца трубку наполняют ртутью и опускают в открытую чашу, тоже заполненную ртутью. Столб ртути в трубке уравновешивается тяжестью внешнего воздуха. При поднятии прибора на гору в трубке образуется пустота, названная в последствии «торричеллиевой». Так был найден способ измерения атмосферного давления.
Опыты с пустотой были продолжены Блезом Паскалем (1623-1662). Узнав об опытах Торричелли, Паскаль решил их повторить, используя вместо ртути воду и вино, меняя форму трубок. Свои опыты он изложил в сочинении «Новые опыты, касающиеся пустоты» (1647 г.). Затем он продолжил серию опытов измерения атмосферного давления на разных высотах. Так, в 1648 г. он измерял давление у подножья горы Пюи-де-Дом и на ее вершине на высоте 467 м, а также в Париже на башне высотой 50 м. Это позволило ему установить так называемое барометрическое нивелирование.
Блез Паскаль известен и как математик. Его работы касаются теории чисел, методам решения задач по вычислению площадей фигур, объемов тел, длин кривых, нахождению центров тяжести. Паскаль одним из первых начал разработку области математики, ставшей впоследствии теорий вероятностей, изучая комбинации ,возникающие в азартных играх.
Расширение сферы опытов с пустотой привело к изобретению воздушного насоса, которое сделал Отто фон Герике (1602-1686). Он обучался в нескольких европейских университетах – Лейпцигском, Иенском, Лейденском ,изучая право ,математику, механику, фортификацию, участвовал в Тридцатилетней войне (1618-1648 гг.) как военный инженер. После серии опытов он нашел способ откачивать воздух из сосуда и изобрел воздушный насос. В 1654 г. он в присутствии императора и князей произвел опыт с так называемыми «магдебургскими полушариями», который вызвал удивление публики. Когда из полости, образованной двумя соприкасающимися полушариями, был выкачен воздух, то разъединить их не могли 16 лошадей. Если же полость наполнялась воздухом, то разъединить полушарии можно было руками без всяких усилий. Герике, таким образом, дал исчерпывающий ответ на вопрос об атмосферном давлении и рассчитал его величину.
Воздушный насос Герике был усовершенствован Робертом Бойлем (1627-1691), который известен в физике в связи с формулировкой газового закона, носящего имя двух ученых – Бойля-Мариотта. Бойль провел множество опытов по исследованию пустоты. Он продемонстрировал, что в пустоте не горит свеча, магнит действует через пустоту, нагретая вода в пустоте закипает, свет распространяется в пустоте, трение в пустоте вызывает тепло и др. Опыт с «торричеллеевой пустотой» привел его к открытию газового закона, согласно которому произведение объема данной массы идеального газа на его давление постоянно при постоянной температуре. Закон был установлен Бойлем в 1662 г. Независимо от Бойля этот же закон был открыт французским ученым Мариоттом, настоятелем монастыря Св. Мартина, в 1676 г. Эдм Мариотт (1620-1684) описал этот опыт в работе «О природе воздуха».
Р. Бойль известен и как английский химик, который дал определение химическому элементы, ввел в химию экспериментальный метод, положил начало химическому анализу, способствуя становлению химии как науки. Свои опыты с пустотой он описал в сочинении «Новые физико-механические опыты» (1660 г.). Бойль ввел понятие «барометр».
Другой областью пристального внимания физиков 17 века было оптика и механика. Оптика занимает особое место в науке, хотя бы потому, что свет простирается от Вселенной (мегамира) до макро и микромира. Научные выводы, полученные при изучении оптических явлений или при помощи оптических методов и средств, не раз меняли представления об устройстве мира, т. е. носили мировоззренческий характер. Вспомним хотя бы Галилея и его первый телескоп. Только с помощью одного прибора он открыл мириады звезд.
В 17 в. с помощью оптических экспериментов решались проблемы природы света и скорости его распространения. В постановке и решении этих проблем видное место принадлежит Франческо Гримальди (1618-1663), Олафу Ремеру (1644-1710), Христиану Гюйгенсу (1629-1695), Роберту Гуку (1635-1703).
Открытие явления дифракции принадлежит итальянскому ученому Франческо Марии Гримальди, им же было и введено понятие «дифракция». Доказательство конечности скорости света принадлежит датскому ученому Олафу Ремеру.
Выдающийся вклад в развитие теоретической оптики, в теорию света был сделан голландским ученым Христианом Гюйгенсом. Он установил один из основополагающих принципов оптической теории – «принцип Гюйгенса».
Гюйгенс всю жизнь занимался шлифовкой стекол, изобрел шлифовальный станок для изготовления линз и создал зрительную трубу хорошего качества, позволившее ему открыть «Кольцо Сатурна», обнаружил «шапки» на Марсе, туманности в созвездии Ориона, полосы на Юпитере. Астрономические наблюдения требовали точных приборов для измерения времени. Гюйгенс изобрел часы с маятником (патент от 1657 г.). Идея маятниковых часов принадлежала Галилею, но реализовать ее удалось Гюйгенсу. Историки считают, что Гюйгенс пришел к своему изобретению независимо от Галилея. В трактате «Маятниковые часы» (1658 г.) Гюйгенс изложил теорию математических и физических маятников, дал формулу для расчета периода колебаний маятника.
Астрономические исследования Гюйгенса и изобретение маятниковых часов сделали его имя известным по всей Европе. Сам Гюйгенс считал себя продолжателем Галилея и Торричелли, теории, которых он, по его собственному выражению «поддерживал и обобщал». Лучшей его работой в области механики является произведение «Качающиеся часы, или о движении маятника». В этой работе, опубликованной в 1673 г., приводится описание маятниковых часов, движение тел по циклоиде, развертка и определение длин кривых линий, определение центр колебаний, описание устройства часов с круговым маятником, изложение теоремы о центробежной силе. Последняя теорема имела большое теоретическое значение для открытия Ньютоном закона всемирного тяготения.
Гюйгенс также занимался вопросами динамики и изложил свои взгляды в работе «О движении тел под влиянием удара», законченной в 1656 г., но опубликованной в 1700 г. Задачу об упругом ударении тел Гюйгенс рассматривал на основе трех принципов – принципа инерции, принципа относительности и принципа сохранения суммы произведений массы каждого тела на квадрат скорости до и после удара. Позднее эта величина была названа кинетической энергией.
Последние два десятилетия Гюйгенс занимался проблемами оптики. В 1690 г. вышла его книга «Трактат о свете». В ней он изложил достаточно стройную волновую теорию света.
Значительная роль в развитии механики принадлежит английскому физику Роберту Гуку (1635-1703). В возрасте 24 лет работал ассистентом у Бойля, а позднее занимал должность «куратора опытов» в королевском научном обществе. Он усовершенствовал многие измерительные приборы: воздушный насос (вместе с Бойлем), барометр с круговой шкалой, анемометр (прибор для измерения силы ветра) и др. Среди оптических приборов он усовершенствовал микроскоп и впервые применил его для научных исследований. Устройство микроскопа описано им в книге «Микрография» (1665 г.). С помощью микроскопа Гук увидел клетки тканей организмов. Само слова «клетка» введено именно Гуком.
В своей книге Гук касается и других вопросов – природы света, опытов по определению упругости воздуха, астрономических наблюдений и др. Гук вплотную приблизился к открытию закона всемирного тяготения. В 1674 г. в работе «Попытка доказать движение Земли наблюдениями» Гук выдвинул три важных предположения, суть которых в следующем:
во-первых, существует сила притяжения, которой обладают все небесные тела, и эта сила направлена к центру тела;
во-вторых, Гук следует Галилею в вопросе о законе инерции;
в-третьих, силы притяжения, по Гуку, увеличиваются по мере приближения к притягивающему телу.
В 1679 г. Гук в письме к Ньютону в Кембридж указал, что, если притяжение обратно пропорционально квадрату расстояния, то формой орбиты планет является эллипс.
Создателем классической механики, обобщившем достижения своих предшественников, по праву считают Исаака Ньютона (1643-1727). Ньютон учился в Кембриджском университете и в 1665 г. получил степень бакалавра, но в связи с охватившей Англию чумой, уехал в свою родную деревню Вулсторп, где плодотворно работал. Именно там под окнами дома росла та знаменитая яблоня, которая, по легенде, подсказала Ньютону закон всемирного тяготения. В течении 93 лет после смерти Ньютона посетители могли видеть эту знаменитую яблоню. В 1820 г. дерево погибло, сломанное бурей, и из его древесины был сделан памятный стул, который хранится в мемориальном музее. Считается, что в Вулсторпе был рожден метод дифференциального и интегрального исчисления, а также начаты знаменитые оптические эксперименты.
В 1668 г. Ньютон получил степень магистра и начал преподавать математику в Кембридже. В этом же году он собственноручно построил свой первый зеркальный телескоп – рефлектор. Это изобретение позволило ему стать членом Лондонского Королевского общества. Усовершенствованный вариант телескопа Ньютон послал в дар королю Карлу II. Как и Галилей, Ньютон заслужил признание в научном мире благодаря исследованиям по оптике, и, в частности, в связи с построением телескопа.
В 1688 г. Ньютон был избран членом английского парламента и два года жил в Лондоне. Но политики Ньютон не любил, как не любил делать научные доклады. В 1692 г. Ньютон заболел, потрясенный пожаром, который привел к утрате научных рукописей. В 1695 г. он выздоровел и был назначен хранителем, а с 1699 г. директором Монетного двора. Под руководством Ньютона была разработана и проведена необходимая экономике Англии денежная реформа. Есть сведения, что с техникой чеканки монет в Англии знакомился Петр 1, где встречался с Ньютоном. В 1703 г. Ньютон стал президентом Лондонского Королевского общества, а с 1705 г. королева Анна возвела Ньютона в дворянство.
Основные научные труды Ньютона следующие:
«Математические начала натуральной философии» (1687), в улучшенном и исправленном виде «Начала» издавались в 1713 и 1726 гг. и «Оптика» (1703). Главные научные достижения Ньютона:
в области математики – дифференциальное и интегральное исчисление;
в области оптики – открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, разрабатывал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления света;
в области механики – сформулировал в 1687 г. три закона.
Первый: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние.
Второй: произведение массы тела на его ускорение равно действующей силе; а направление ускорения совпадает с направлением силы.
Третий: действию всегда соответствует равное и противоположно направленное противодействие; или: действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны.
Закон всемирного тяготения: сила F взаимного притяжения материальных точек с массами m1 и m2, находящихся на расстоянии r друг от друга, равна:
,
где g - гравитационная
постоянная.
В области астрономии – создал основы небесной механики. Пространство и время считал абсолютными.
Свою научную программу Ньютон назвал «экспериментальной философией». В соответствии с ней исследование природы должно опираться на опыт, который затем обобщается при помощи «метода принципов», смысл которого заключается в следующем:
-провести наблюдение и эксперименты;
-с помощью индукции вычленить в чистом виде связи явлений внешнего мира;
-выявить фундаментальные закономерности, которые управляют изучаемыми процессами;
-осуществить их математическую обработку;
-построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов.
Это и есть методологическая программа, предложенная науки Ньютоном. В связи с этим он провозгласил: «Гипотез не измышляю».
Благодаря этим обобщениям Ньютона сложилась механистическая картина мира. Она состоит в следующем:
вся Вселенная – совокупность большого числа неизменных и неделимых частиц, перемещающихся в абсолютном пространстве и времени, связанных между собой силами тяготения, подчиненных законам классической механики;
-природа выступает в роли простой машины, части которой жестко детерминированы; все процессы в ней сведены к механическим.
Механистическая картина мира сыграла свою положительную роль, дав естественнонаучное понимание многих явлений природы и преодолев мистическое и сверхъестественное объяснение многих явлений. Ученые не просто ставили отдельные опыты, но создавали натурфилософские теоретические системы. Таким путем начало формироваться теоретическое естествознание, и в первую очередь – физика. В основе механистической картины мира лежал метафизический подход к изучению явлений природы как не связанным между собой, неизменным и не развивающимся.
Идеи Ньютона, опирающиеся на математическую физику и эксперимент, определили направление развития естествознания на многие десятилетия вперед. Таким образом, начатая Галилеем и завершенная Ньютоном идея создания новой физики завершилась формированием классической механики. Именно с ней связывают вторую научную революцию. Благодаря трудам ученых 17 века началась длительная эпоха торжества механики, господства механистических представлений о мире.
Под влиянием механистических представлений в 18 в. начала развиваться биология. Шведский ученый-натуралист Карл Линней (1707-1778) в работе «Система природы» провел классификацию животного мира. Достоинством ее явилась бинарная система обозначения растений и животных, где первое слово обозначало род, а второе – вид. Она сохраняется и по настоящее время. Расположив растения и животных в порядке усложнения их строения, ученый тем не менее не усмотрел изменчивости видов, считая их неизменными, созданными Богом.
Проникновение диалектических идей в естествознание приходится на вторую половину 18 – 19 века.