
- •Лекция 1
- •Раздел I. Проблемы развития энергетики
- •1.1. Энергетика и энергетические ресурсы
- •По отдельным регионам, тВт∙ч
- •1.1.1. Возобновляемые и невозобновляемые источники энергии
- •России до 2050 г.
- •Лекция 2
- •1.1.2. Перспективы использования твердого топлива. Основные месторождения ископаемого твердого топлива рф
- •Лекция 3
- •1.1.3. Перспективы развития нефтяного комплекса и систем газоснабжения. Месторождения нефти и газа
- •По состоянию на начало 2001 г.
- •Лекция 4
- •1.2. Технические характеристики топлив
- •1.2.1. Технические характеристики мазута
- •1.2.2. Технические характеристики газа
- •1.2.3. Характеристики твердого топлива
- •Горение топлива
- •1.3.2. Основные потребители воды и характеристика сточных вод
- •1.4. Энергосберегающие технологии в энергетике. Энергоаудит
- •Лекция 6
- •Раздел II. Виды потребления энергии и графики нагрузок
- •2.1. Электрическое потребление
- •2.2. Тепловое потребление
- •Раздел III. Технологические схемы
- •Раздельного и комбинированного производства
- •Электроэнергии и тепла
- •Лекция 7
- •3.1. Тепловые схемы котельных
- •3.1.1. Принципиальная тепловая схема (птс) котельной с паровыми котлами
- •3 .1.2. Принципиальная тепловая схема (птс) котельной с водогрейными котлами для закрытых систем теплоснабжения
- •3.1.3. Принципиальная тепловая схема (птс) котельной для открытых систем теплоснабжения с водогрейным котлами
- •3.1.4. Принципиальная тепловая схема (птс) котельной с паровыми и водогрейными котлами
- •3.1.5. Котельная с комбинированными пароводогрейными агрегатами
- •Лекция 8
- •3.2. Принципиальная технологическая схема паротурбинной электростанции
- •3.3. Технологическая структура электростанций
- •Лекция 9
- •Раздел IV. Классификация тепловых электрических станций (тэс)
- •Раздел V. Показатели тепловой и общей экономичности тэс
- •Лекция 12
- •5.1.3. Расходы пара, тепла, топлива и коэффициенты полезного действия конденсационной электростанции с промежуточным перегревом пара
- •Лекция 13
- •5.2. Тепловая экономичность и энергетические показатели теплоэлектроцентралей (тэц)
- •5.2.1. Расходы пара и тепла на теплофикационные установки
- •Численное значение э находится в пределах 50 – 180, возрастая с повышением начальных параметров и снижением конечного давления.
- •Лекция 14
- •Первое слагаемое в формуле (5.2.9)
- •5.2.2. Энергетические показатели тэц
- •Лекция 15
- •Раздел VI. Начальные параметры и промежуточный перегрев пара
- •6.1. Зависимость тепловой экономичности тэс от начальных параметров пара
- •6.2. Промежуточный перегрев пара на кэс
- •Лекция 16
- •6.3. Промежуточный перегрев пара на тэц
- •6.4. Влияние конечных параметров пара на тепловую экономичность тэс
- •6.5. Способы промежуточного перегрева пара
- •Раздел VII. Регенеративный подогрев
- •7.2. Расход пара на турбину с регенеративными отборами
- •7.3. Типы подогревателей и схемы их включения
- •7.4. Оптимальное распределение регенеративного подогрева питательной воды на кэс
- •7.4.1. Распределение регенеративного подогрева воды и отборов в турбине при промежуточном перегреве пара
- •7.4.2. Охладители пара отборов и их влияние на распределение регенеративного подогрева воды
- •7.5. Регенеративный подогрев воды на теплоэлектроцентралях (тэц). Распределение регенеративного подогрева воды на тэц
1.1.1. Возобновляемые и невозобновляемые источники энергии
Естественные (природные) источники, из которых энергия черпается для приготовления ее в нужных видах для различных технологических процессов, называются энергетическими ресурсами.
Различают следующие виды основных энергетических ресурсов:
а) химическая энергия топлива;
б) атомная энергия;
в) водная энергия (то есть гидравлическая);
г) энергия излучения солнца;
д) энергия ветра.
Большое развитие во всем мире получают атомные электростанции (АЭС). На 1985 год в мире успешно работало около 280 АЭС, еще 230 АЭС находились на стадии строительства. Доля электроэнергии, производимой на АЭС, в восемнадцати странах мира превышает 20 %, в восьми – 40 % и в трех (Франция, Бельгия, Литва) – 50 %.
Гидравлические электростанции (ГЭС), используют энергию падения водных потоков. Гидроэнергетика играет важную роль в структуре производства электроэнергии в мире (18,8 %) и в большинстве регионов. К числу ведущих стран по выработке электроэнергии ГЭС относятся: Китай – 1260, Россия – 850, Бразилия – 806, Канада – 536 ТВт ч. ГЭС по сравнению с ТЭС имеет преимущество – вода – материальный носитель энергии – не расходуется подобно органическому топливу, а возобновляется. Но дальнейшее развитие ГЭС ограничено, так как в ряде районов мира и у нас в России водные ресурсы почти полностью использованы. В то же время сохраняется интерес к некоторым уникальным гидроэнергетическим проектам, таким, как ГЭС «Три ущелья» в Китае, на р. Инга в Центральной Америке, на р. Амазонка и ее притоках в Бразилии. ГЭС «Три ущелья» в 2003 г. уже пустила первый агрегат. Другие уникальные гидроэнергетические проекты находятся в стадии обсуждения. В России и странах СНГ 16 крупных ГЭС мощностью 1000 МВт и более, в том числе в России Красноярская, Братская, Саяно – Шушенская, Усть – Илимская ГЭС; в США – 12 ГЭС.
Электроэнергия на базе нетрадиционных возобновляемых источников энергии (НВИЭ) до последнего времени производилась в ограниченных масштабах. Доля НВИЭ в структуре мирового производства на начало 1999 г. составляла 1,5 %. Основной причиной было отсутствие технических решений, имеющих достаточно высокую экономическую эффективность. В последние годы использование НВИЭ для производства электроэнергии получило развитие. Западноевропейские страны планируют увеличить производство электроэнергии на базе НВИЭ к 2010 г. в среднем более чем на 10 %, особенно за счет использования энергии ветра. В настоящее время суммарная установленная мощность работающих в мире ветроэнергетических установок
(ВЭУ) составляет ~ 10 ГВт. Из введенных в 1998 г. 2,1 ГВт ВЭУ 75 % приходилось на западноевропейские страны (Германия, Дания, Великобритания, Нидерланды, Швеция, Испания).
Самая мощная ветровая энергетическая станция находится в Калифорнии. При скорости ветра 40 км/ч ее мощность достигает 3000 кВт. Самая большая ветряная турбина в мире работает в Северной Каролине близ города Буна. При ветре, дующем со скоростью 25 миль в час, она вырабатывает 2000 кВт электрической энергии, это в 10 раз больше, чем вырабатываемая энергия самой крупной ветряной мельницы. Лопасти устройства имеют в диаметре 200 футов, а установлены они на башне высотой 140 футов. По данным института, спроектировавшего турбину, энергии ее достаточно для обеспечения 500 средних жилищ.
Такое же местное значение имеют электростанции, использующие энергию солнечного излучения – солнечные электростанции (Крымская СЭ Nэ = 5 МВт); приливов и отливов океанской воды – приливные электростанции (ПЭС) (Кислогубская ПЭС); гидроаккумулирующие электростанции (ГАЭС), которые потребляют электрическую энергию в периоды малых нагрузок (ночью) и производят ее в периоды максимальных нагрузок в часы пик; геотермальные электростанции, которые потребляют энергию подземных термальных вод – (Гео ТЭС) (Паужетская Гео ТЭС Nэ = 2,5 МВт). Ежегодный прирост мощности на базе НВИЭ при условии ввода вновь проектируемых Гео ТЭС в первой декаде XXI века может превысить 10 ГВт.
Наибольшая часть электрической энергии, потребляемой в нашей стране, получается за счет сжигания топлив, добываемых из недр земли – уголь, газ, мазут (продукт переработки нефти). При их сжигании химическая энергия топлив превращается в тепловую.
Электростанции, преобразующие получающуюся при сжигании топлива тепловую энергию в механическую, а эту последнюю в электрическую, называются тепловыми электрическими станциями (ТЭС).
Отдельная отрасль энергетики, которая занимается использованием топлив для получения тепловой энергии при их сжигании и преобразованием ее в механическую как для прямого использования, так и для дальнейшего преобразования в электрическую, называется теплоэнергетикой.
Перспективные изменения условий развития электроэнергетики России приведут к изменениям технологической структуры генерирующих мощностей (см. табл. 2).
Таблица 2. Основные показатели развития электроэнергетики