Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы ТМ Макеев.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
1.51 Mб
Скачать

8.3. Влияние качества поверхности на

ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА ДЕТАЛЕЙ МАШИН

Обеспечение заданного качества машин и длительное сохранение его первоначального уровня во многом зависит от качества поверхностей их деталей. Основная причина (80%) выхода из строя машин это износ рабочих поверхностей сопряженных деталей. Значительно реже наблюдается поломки деталей из-за некачественного изготовления или их конструктивного несовершенства или заниженной усталостной прочности. Трущиеся поверхности изнашиваются по времени, кривая 1.

Участок 1 характеризует первичный износ (приработку) сопряженной пары. Контакт происходит по вершинам. Первоначальная фактическая поверхность соприкосновения деталей составляет небольшой процент от расчетной, в местах контакта возникают большие давления. При взаимном перемещении трущихся поверхностей микронеровности вызывают местный разрыв масляной пленки и наиболее выступающие неровности разрушаются путем среза, обламывания или пластического сдвига. В результате этого несущая поверхность увеличивается, и зазор в сопряженной паре возрастает, т.е. происходит интенсивный износ.

Участок 2 – нормальный эксплуатационный износ, который при правильном режиме работы и надежной смазке протекает длительное время.

Участок 3 – аварийный износ пары.

Кривая 2 характеризует износ поверхности с меньшей шероховатостью. В этом случае величина и время первичного износа уменьшается, а интенсивность эксплуатационного износа остается той же.

Продолжительность работы трущихся пар до границы допустимого износа А будет различной, следовательно время работы деталей с меньшей шероховатостью будет больше.

В период нормальной эксплуатации износ определяется физико-механическими свойствами поверхностного слоя и режимами работы трущейся пары (скорость скольжения, нагрузка, характер смазки).

Особенно большие износы происходят при частых пусках машин, когда нарушается режим смазки сопрягаемых поверхностей. Нередко это связано с их задирами и схватыванием.

На первичный износ сопрягаемых деталей влияет форма и высота микронеровностей, направление рисок (штрихов) обработки относительно направления скольжения поверхностей, волнистость и макрогеометрические отклонения поверхностей трения.

Влияние этих факторов по-разному проявляется при сухом, граничном и жидкостном трении. Островершинные микронеровности изнашиваются быстрее плосковершинных. Влияние высоты микронеровностей на износ показано на рисунке.

Кривая 1 соответствует более легким, а кривая 2 более тяжелым условиям. Из рисунка видно, что уменьшение шероховатости целесообразно проводить до определенного предела. На очень чистых поверхностях смазка удерживается плохо, в результате возможно увеличение износа и схватывание сопряженных деталей из-за сухого трения.

В этом смысле пришабренные поверхности лучше притертых, т.к. в них имеются своеобразные углубления (карманы), удерживающие смазку. Хорошее удержание смазки обеспечивается слоем пористого хрома, пористой структурой металлокерамических деталей, а также системой мелких маслоудерживающих каналов, получаемых виброобкатыванием.

Наименее выгодное направление штрихов обработки у обеих трущихся деталей перпендикулярной к направлению скольжения (кривая1). При совмещении направления штрихов обработки с направлением скольжения износ уменьшается (кривая 2). Промежуточный случай имеет место, когда направление скольжения совпадает с направлением штрихов одной детали и перпендикулярной к направлению другой (кривая 3). В ответственных спряжениях направление штрихов обработки может быть оговорено в технических условиях. Влияние направления штрихов обработки на износ более заметно при сухом и граничном трении (кривая А); при жидкостном трении это влияние заметно только при большей высоте микронеровностей, т.к. слой смазки разделяет сопрягаемые детали (кривая Б).

Кривая 1 соответствует более легким, а кривая 2 более тяжелым условиям работы. Из рисунка видно, что уменьшение шероховатости целесообразно производить до определенного предела.

Большое влияние на износ и сокращение продолжительности работы трущейся пары оказывает волнистость и макрогеометрические погрешности сопряженных поверхностей. Эти дефекты уменьшают поверхности контакта и увеличивают удельные нагрузки против расчетных. Уменьшая волнистость и макрогеометрические погрешности можно увеличить срок службы соединения в 1,5 – 2 раза.

Наклеп, возникает в результате механической обработки уменьшает износ поверхности в 1,5 – 2 раза. В случае перенаклепа (при высокой Н )износ возрастает в результате возникновения шелушения частиц металла.

Износ уменьшается после термической и химико-термической обработки деталей (поверхностная закалка, борирование, цементация, ционирование, диффузионное хромирование, сульфидирование и др.), наплавкой твердых сплавов, а также гальваническим нанесением твердых покрытий (хромирование). Износостойкость чугунных деталей повышают созданием на поверхностях трения отбеленной корки.

На уменьшение износа влияет твердость структуры и химический состав поверхностного слоя. Наличие в нем остаточных напряжений на износ от трения скольжения сказывается слабо. Однако износ может изменять остаточные напряжения в поверхностном слое детали.

Остаточные напряжения сжатия – уменьшают износ, растяжения – увеличивают. Для подшипников качения важно, чтобы направление волокон материала колец было параллельно (концентрично) поверхности колец.

Шероховатость поверхности влияет на прочность деталей, работающих в условиях циклической и знакопеременных нагрузок. Впадины микропрофиля являются своеобразными надрезами на поверхности и в значительной степени влияют на концентрацию напряжений и образование усталостных трещин. Для устранения этих дефектов для ответственных деталей выполняют отдельную дополнительную обработку (шатуны, коленчатые валы, диски и роторные турбины). Влияние шероховатости поверхности на точность очень заметна у заготовок из высокоуглеродистых сталей, работающих при ударной нагрузке.

Наличие наклепа и остаточных напряжений сжатия в поверхностном слое повышает предел выносливости материала ответственных деталей (пружины, торсионные валы).

От качеств поверхности зависит контактная жесткость стыков сопрягаемых деталей. Шероховатость и волнистость поверхностей уменьшает фактическую площадь контакта, который происходит по отдельным участкам. Несущая поверхность детали зависит от шероховатости и метода обработки (микрорельефа). Rz=2,5-8 мкм (разверт и шлифов) – 10%; Rz=0,8-2,5 мкм – 40%.

При алмазном точении и обычной притирке – 63%, а в результате тонкого шлифования, смазочного выглаживания, тонкой притирке и суперфиниша – 80-90%.

Для повышения контактной жесткости необходимо:

  • применять методы отделочной обработки;

  • обеспечивать совпадение направления неровностей;

  • повышать твердость поверхностного слоя созданием в нем наклепа.

Прочность сопряжений с натягом во многом зависит от шероховатости поверхностей. При заприсовке происходит смятие микронеровностей и фактический натяг уменьшается против расчетного. При посадке с натягом осуществляемой с тепловым воздействием, смятие микронеровностей не происходит. Прочность таких посадок выше, чем при обычной запрессовке стой же величиной натяга.

На коррозионную стойкость влияют:

  • шероховатость;

  • остаточные напряжения;

  • наклеп, т.е. влияет метод обработки.

Чем выше Ra, Rz тем коррозионная стойкость ниже.

Режим ППД может повысить коррозионную стойкость (залечивание микротрещин, благоприятная шероховатость, остаточные напряжения сжатия и т.д.).

Сопротивление коррозии и эрозии при высоких температурах достигается плазменным напылением, гальвано и др. покрытий.

Шероховатость поверхности оказывает влияние на условия смазки, трение, теплопроводность и герметичность стыков, сопротивление протеканию газов и жидкостей в трубопроводах, сопротивление кавитационному разрушению в гидравлических машинах.