
- •Общие свойства оснований и грунтовых вод Основные определения.
- •Несущая способность основания.
- •Промерзаемость грунта и глубина заложения фундаментов
- •Грунтовые воды.
- •Влияние грунтовых вод на устойчивость и прочность основания.
- •Агрессивность грунтовых вод.
- •Незыблемость основания.
- •Ф.10. Расчет оснований фундаментов мелкого заложения по деформациям ф.10.1. В чем заключается сущность расчета по деформациям?
- •Ф.10.2. На какие виды подразделяются деформации оснований и сооружений?
- •Ф.10.3. Какие деформации являются наиболее опасными для сооружений?
- •Ф.10.4. Как нормируются значения деформаций оснований?
- •Ф.10.5. Как определяются нормируемые (предельные) значения деформации основания?
- •Ф.10.6. Зависит ли величина предельной деформации основания от грунтовых условий?
- •Ф.10.7. Как проектировать здание или сооружение, если неизвестно предельное значение деформации основания?
- •Ф.10.8. Почему в таблице прил.4 сНиП [1] для элеваторов и дымовых труб не нормируется величина относительной разности осадок?
- •Ф.10.9. Какие методы рекомендуются для расчета осадок фундаментов?
- •Ф.10.10. Как рассчитать осадку основания методом послойного суммирования?
- •Ф.10.11. Как рассчитать осадку основания методом эквивалентного слоя грунта?
- •Ф.10.12. Как определяется осадка основания с использованием схемы линейно-деформируемого слоя?
- •Ф.10.13. Можно ли использовать формулу ф.Шлейхера для определения осадки основания?
- •Ф.10.14. Можно ли определить осадку при наличии областей сдвига под подошвой фундаментов?
- •Ф.10.15. Как можно учесть эффект разуплотнения грунта, возникающего при разработке котлована при расчете деформаций основания?
- •Ф.10.16. Что такое расчетное сопротивление грунта основания?
- •Ф.10.17. Что такое условное расчетное сопротивление грунта r0и как оно определяется?
- •Ф.10.18. Почему расчетное сопротивление основания при прерывистых фундаментах больше, чем для ленточных фундаментов?
- •Ф.10.19. В каких случаях допускается увеличение расчетного сопротивления грунта?
- •Ф.10.20. Какие расчеты необходимо выполнить при проектировании оснований по деформациям?
- •Ф.10.21. Как определить ширину подошвы центрально нагруженного фундамента?
- •Ф.10.22. Как определить ширину подошвы внецентренно нагруженного фундамента?
- •Ф.10.23. Влияют ли наличие нагрузки на полах промышленных зданий или пригрузки вблизи сооружения на давление под подошвой фундамента?
- •Ф.10.24. На что влияет наличие в основании слабого слоя грунта?
- •Ф.10.25. Какие основные конструктивные мероприятия уменьшают влияние неравномерных осадок сооружения?
- •Ф.10.26. Какие особые конструктивные решения могут быть приняты при строительстве разноэтажных зданий с пристройками?
Агрессивность грунтовых вод.
Грунтовые воды, способные разрушать цементные бетоны и растворы, называются агрессивными. Агрессивность их зависит от химического состава растворенных в них солей и кислот. Эти вещества попадают в воду из подземных естественных залежей или из отбросов некоторых производств. Поэтому агрес-сивные воды встречаются повсеместно. Вода даже с малым количеством вредных веществ может оказаться опасной для бетона, так как вследствие непрерывного движения воды на бетон дей-ствуют все новые и новые частицы вредных примесей. Поэтому всегда следует производить химический анализ воды. Во всякой воде имеется, хотя бы в ничтожном количестве, углекислота (СО2) Она может быть связанной (неактивной, неспособной вступать в какие-либо новые соединения) и свободной (активной). Связанная углекислота для бетона безвредна. Свободная углекислота вступает в реакцию с известью бетона и обра-зует растворимые в воде соли. В сильно загрязнённой воде, при наличии в ней и свободной углекислоты (СО2), и сульфатов (S04), и хлоридов (Сl), и окиси магния (MgO), путём взаимо-действия с бетоном образуются растворимые соли, и потому агрессивность воды зависит от совокупности всех этих примесей. В сравнительно чистой воде при отсутствии хлора (Cl) и свободной угле-кислоты (СО2), при наличии солей магния (MgO) и натрия (NaO) в количестве, меньшем 60 мг/л, вредны растворы гипса, так как они ведут к образованию сложных солей ("цементная бацилла"), которые увеличиваются в объёме и по-тому разрушают бетон. Весьма вредны примеси азотной и азотистой кислот и аммиака. Наоборот, Кремнекислота в любом количестве безвредна. - Допускаемые в зависимости от качества бетона и цемента количества этих вредных примесей приведены на стр. 100, где указаны и методы защиты фунда-ментов от агрессивных вод.
Незыблемость основания.
Кроме рассмотренных выше случаев нарушения устойчивости верхних слоев грунта, практика знает не мало примеров, когда неустойчивым оказывалось все напластование грунтов в целом, и сооружение, расположенное на вполне прочных верхних слоях грунта, подвергалось разрушению. Такое нарушение устойчивости возможно в следую-щих случаях: 1) вблизи рек и оврагов, в гористых районах, когда вследствие наклона нижних слоев к горизонту возможно сползание по ним или обвал верхних пластов; опасность таких оползней и обвалов сильно возрастает при глинистых грунтах, особенно если они смачиваются водами; 2)у высоких морских берегов, где вследствие подмыва возможно обрушение целых участков берега; 3)в некоторых районах, где в силу различных причин на некоторой глубине образовались большие внутренние пустоты (карсты, выработки); при возведении сооружения непосредственно над ними возможен, под действием дополни-тельной нагрузки, провал всех верхних слоев; 4)в сейсмических районах. Все перечисленные особенности геологического строения участка не могут быть установлены простой разведкой грунтов, поэтому при строительстве в оползневых, обвальных, карстовых: сейсмических районах необходимы спе-циальное геологическое обследование, устанавливающее возможность перечис-ленных явлений, и мероприятия, обеспечивающие устойчивость сооружения.