
- •Глава 1 Задачи логики
- •1. Правильное рассуждение
- •2. Логическая форма
- •3. Дедукция и индукция
- •4. Интуитивная логика
- •5. Некоторые схемы правильных рассуждений
- •6. Традиционная и современная логика
- •7. Современная логика и другие науки
- •Глава 2 Слова и вещи
- •1. Язык как знаковая система
- •2. Основные функции языка
- •3. Логическая грамматика
- •Глава 3 Имена
- •1. Виды имён
- •2. Отношения между именами
- •3. Определение
- •4. Деление
- •2. Условное высказывание, импликация, эквивалентность
- •3. Описательные и оценочные высказывания
- •4. Модальные высказывания
- •Глава 5 Ловушки языка
- •1. Тайная мудрость языка
- •2. Многозначность
- •3. Эгоцентрические слова
- •4. Неточные и неясные имена
- •5. Гипостазирование
- •6. Роли имён
- •Глава 6 о смысле бессмысленного
- •1. Осмысленное и бессмысленное
- •2. Абсурд
- •3. Синтаксические нарушения
- •4. Семантические нарушения
- •5. Крайние случаи бессмысленного
- •6. Туманное и тёмное
- •Глава 7 Логика высказываний
- •1. Логический закон
- •2. Закон противоречия
- •3. Закон исключённого третьего
- •4. Логические законы тождества, двойного отрицания и другие Закон тожества
- •Закон двойного отрицания
- •Законы контрапозиции
- •Модус поненс
- •Модус толленс
- •Модус понендо толленс
- •Модус толлендо поненс
- •Законы де Моргана
- •Закон приведения к абсурду
- •Закон косвенного доказательства
- •Закон Клавия
- •Закон транзитивности
- •Законы ассоциативности и коммутативности
- •Закон Дунса Скотта
- •5. Логическое следование
- •6. Язык логики предикатов
- •Глава 8 Модальная логика
- •1. Логические модальности
- •2. Физические модальности
- •3. Логическое исследование ценностей
- •Глава 9 Логика категорических высказываний
- •1. Категорические высказывания
- •2. Логический квадрат
- •3. Категорический силлогизм
- •Глава 10 Доказательство и опровержение
- •1. Понятие доказательства и его структура
- •2. Прямое и косвенное доказательство
- •3. Виды косвенных доказательств
- •4. Опровержение
- •5. Ошибки в доказательстве
- •6. Софизмы
- •Глава 11 Индуктивные рассуждения
- •1. Индукция как вероятное рассуждение
- •2. Неполная индукция
- •3. Подтверждение следствий
- •4. Полная индукция и математическая индукция
- •5. Методы установления причинных связей
- •Единственное сходство
- •Единственное различие
- •Сходство и различие
- •Сопутствующие изменения
- •Остающаяся часть причины
- •6. Надёжность индукции
- •7. Аналогия
- •Аналогия свойств и аналогия отношений
- •Вероятный характер аналогии
- •Понимание по аналогии
- •Типичные ошибки
- •Глава 12 Проблема понимания
- •1. Структура понимания
- •2. Сильное понимание
- •3. Понимание поведения
- •4. Понимание природы
- •5. Понимание языковых выражений
- •6. Объяснение
- •Глава 13 Аргументация и логика
- •1. Теория аргументации
- •2. Обоснование
- •3. Эмпирическая аргументация
- •4. Факты как примеры и иллюстрации
- •5. Теоретическая аргументация
- •6. Контекстуальная аргументация
- •7. Обоснование и истина
- •8. Аргументация в поддержку оценок
- •Глава 14 Спор и его виды
- •1. Корректные и некорректные споры
- •2. Споры об истине и споры о ценностях
- •3. Четыре разновидности споров
- •4. Общие требования к спору
- •5. Победа в споре
- •Вместо заключения
Законы контрапозиции
Законы контрапозиции говорят о перемене позиций высказываний с помощью отрицания: из условного высказывания «если есть первое, то есть второе» вытекает «если нет второго, то нет и первого», и наоборот.
Символически:
(А ? В) ? ( ~ В ? ~ А) ,
если дело обстоит так, что если A , то B , то если не-В , то не-А ;
( ~ B ? ~ А) ? (А ? В) ,
если дело обстоит так, что если не-B , то не-A , то если A , то В .
К примеру: из высказывания «Если есть следствие, то есть и причина» следует высказывание «Если нет причины, нет и следствия», и из второго высказывания вытекает первое.
К законам контрапозиции обычно относят также законы:
(А ? ~ В) ? (В ? ~ А) ,
если дело обстоит так, что если A , то не-B , то если B , то не-A Например, «Если квадрат не является треугольником, то треугольник не квадрат»;
(~ А ? В) ? (~ В ? А) ,
если верно, что если не-A , то B , то если не-B то A . К примеру: «Если не являющееся очевидным сомнительно, то не являющееся сомнительным очевидно».
Контрапозиция подобна рокировке в шахматной игре. И подобно тому, как редкая партия проходит без рокировки, так и редкое наше рассуждение обходится без контрапозиции.
Модус поненс
Слово «модус» в логике означает разновидность некоторой общей формы рассуждения. «Модус поненс» – термин средневековой логики, обозначающий определённое правило вывода и соответствующий ему логический закон.
Правило вывода модус поненс, обычно называемое правилом отделения или гипотетическим силлогизмом , позволяет от утверждения условного высказывания и утверждения его основания (антецедента) перейти к утверждению следствия (консеквента) этого
Здесь «если A , то B » и «A » – посылки, «B » – заключение; горизонтальная черта стоит вместо слова «следовательно». Другая запись:
Если A , то B. А . Следовательно, В .
Благодаря этому правилу от посылки «если A , то B », используя посылку «A », мы как бы отделяем заключение «B ». Например:
Если у человека грипп, он болен.
У человека грипп.
Человек болен.
Это правило постоянно используется в наших рассуждениях. Впервые оно было сформулировано, насколько можно судить, учеником Аристотеля Теофрастом ещё в III в. до н.э.
Соответствующий правилу отделения логический закон формулируется так:
(А ? В) & A ? B ,
если верно, что если A , то B , и A , то верно B . Например: «Если при дожде трава растёт быстрее и идёт дождь, то трава растёт быстрее».
Рассуждение по правилу модус понёс идёт от утверждения основания истинного условного высказывания к утверждению его следствия. Это логически корректное движение мысли иногда путается со сходным, но логически неправильным её движением от утверждения следствия истинного условного высказывания к утверждению его основания.
Например, правильным является умозаключение:
Если висмут – металл, он проводит электрический ток.
Висмут – металл.
Висмут проводит электрический ток.
Но внешне сходное с ним умозаключение:
Если висмут – металл, он проводит электрический ток.
Висмут проводит электрический ток.
Висмут металл.
логически некорректно. Рассуждая по последней схеме, можно от истинных посылок прийти к ложному заключению. Например:
Если человек собирает марки, он коллекционер.
Человек – коллекционер.
Человек собирает марки.
Далеко не все коллекционеры собирают именно марки; из того, что человек коллекционер, нельзя заключать, что он собирает как раз марки. Истинность посылок не гарантирует истинности заключения.
Против смешения правила модус поненс с указанной неправильной схемой предостерегает совет: от подтверждения основания к подтверждению следствия заключать можно, от подтверждения следствия к подтверждению основания – нет.