
- •23. Полупроводниковые диоды. Применение в узлах су
- •Фотодиоды (Фотодио́д — приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.
- •Применение диодов
- •4. Диодная защита ключа, коммутирующего индуктивную нагрузку
- •5. Диодные переключатели
- •Вопрос 24. Коммуникационное оборудование (мосты, шлюзы, хабы, маршрутизаторы).
23. Полупроводниковые диоды. Применение в узлах су
Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.
Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии
Основные характеристики и параметры диодов
Вольт-амперная характеристика (Вольт-амперная характеристика (ВАХ) — график зависимости тока через двухполюсник от напряжения на этом двухполюснике. Вольт-амперная характеристика описывает поведение двухполюсника на постоянном токе.)
Постоянный обратный ток диода
Постоянное обратное напряжение диода
Постоянный прямой ток диода
Диапазон частот диода
Дифференциальное сопротивление
Ёмкость
Пробивное напряжение
Максимально допустимая мощность
Максимально допустимый постоянный прямой ток диода
Классификация диодов
Типы диодов по назначению
Выпрямительные диоды предназначены для преобразования переменного тока в постоянный.
Импульсные диоды имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.
Детекторные диоды предназначены для детектирования сигнала
Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.
Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.
Параметрические
Ограничительные диоды предназначены для защиты радио и бытовой аппаратуры от повышения сетевого напряжения.
Умножительные
Настроечные
Генераторные
Типы диодов по частотному диапазону
Низкочастотные
Высокочастотные
СВЧ
Типы диодов по размеру перехода
Плоскостные
Точечные
Типы диодов по конструкции
Диоды Шоттки (Диод Шоттки (также правильно Шотки, сокращённо ДШ) — полупроводниковый диод с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. Диоды Шоттки используют переход металл-полупроводник в качестве барьера Шоттки (вместо p-n перехода, как у обычных диодов). Допустимое обратное напряжение промышленно выпускаемых диодов Шоттки ограничено 250 В (MBR40250 и аналоги), на практике большинство диодов Шоттки применяется в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.)
СВЧ-диоды (Сверхвысокочастотный диод — полупроводниковый диод, предназначенный для работы в сантиметровом диапазоне волн. Диод содержит между двумя сильно легированными областями высокой проводимости n+ и p+ активную базовую i-область с низкой проводимостью и большим временем жизни носителей заряда, то есть p-i-n-переход. Это позволяет снизить его емкость и повысить частоту работы элемента.
Проводимость диода зависит от длины волны, интенсивности и частоты модуляции падающего излучения. Обедненный слой существует почти во всей области собственной электропроводности, которая имеет постоянную ширину даже при обратном включении. Область собственной электропроводности может быть расширена с помощью увеличения зоны рекомбинирования электронов и дырок. Этим обуславливается применение p-i-n диодов в фотодетекторах.
Сверхвысокочастотные диоды подразделяют на:
смесительные (например: 2А101 — 2А109);
детекторные (например: 2А201 — 2А203);
параметрические (например: 1А401 — 1А408);
переключательные и ограничительные (например 2А503 — 2А524);
умножительные и настроечные (например: 2А601 — 2А613);
генераторные (3А703, 3А705).
В зависимости от внутреннего строения диода и используемых в нем физических эффектов диоды СВЧ бывают множества самых различных подтипов. Часто диоды одного подтипа могут использоваться в устройствах различного назначения. Например, и как умножительные, и как смесительные и т.д. Наиболее известны и распространены следующие виды диодов СВЧ: лавинно-пролетные диоды (диоды Рида, диоды Мисавы, диоды Тагера и т.д.), p-i-n диоды, диоды Ганна, точечно-контактные диоды, диоды с переходом Шоттки или Мотта и др.)
Стабилитроны (Полупроводниковый стабилитрон — это диод, предназначенный для работы в режиме пробоя на обратной ветви вольт-амперной характеристики. В диоде, к которому приложено обратное, или запирающее, напряжение, возможны три механизма пробоя: туннельный пробой, лавинный пробой и пробой вследствии тепловой неустойчивости — катастрофического саморазогрева токами утечки. Тепловой пробой наблюдается в выпрямительных диодах, особенно германиевых, а для кремниевых стабилитронов он не критичен. Стабилитроны проектируются и изготавливаются таким образом, что либо туннельный, либо лавинный пробой, либо оба эти явления вместе возникают задолго до того, как в кристалле диода возникнут предпосылки к тепловому пробою. Серийные стабилитроны изготавливаются из кремния, известны также перспективные разработки стабилитронов из карбида кремния и арсенида галлия.
Туннельный, или зенеровский, пробой возникает в полупроводнике только тогда, когда напряжённость электрического поля в p-n-переходе достигает уровня в 106 В/см. Такие уровни напряжённости возможны только в высоколегированных диодах (структурах p+-n+-типа проводимости) с напряжением пробоя не более шестикратной ширины запрещённой зоны (6 EG ≈ 6,7 В), при этом в диапазоне от 4 EG до 6 EG (4,5…6,7 В) туннельный пробой сосуществует с лавинным, а при напряжении пробоя менее 4 EG (≈4,5 В) полностью вытесняет его. С ростом температуры перехода ширина запрещённой зоны, а вместе с ней и напряжение пробоя, уменьшается: низковольтные стабилитроны с преобладанием туннельного пробоя имеют отрицательный температурный коэффициент напряжения (ТКН)[23].
В диодах с меньшими уровнями легирования, или меньшими градиентами легирующих примесей, и, как следствие, бо́льшими напряжениями пробоя наблюдается лавинный механизм пробоя. Он возникает при концентрациях примесей, примерно соответствующих напряжению пробоя в 4 EG (≈4,5 В), а при напряжениях пробоя выше 4 EG (≈7,2 В) полностью вытесняет туннельный механизм. Напряжение, при котором возникает лавинный пробой, с ростом температуры возрастает, а наибольшая величина ТКН пробоя наблюдается в низколегированных, относительно высоковольтных, переходах.
Основное назначение стабилитронов — стабилизация напряжения[1][2]. Серийные стабилитроны изготавливаются на напряжения от 1,8 В до 400 В[3]. Интегральные стабилитроны со скрытой структурой на напряжение около 7 В являются самыми точными и стабильными твердотельными источниками опорного напряжения: лучшие их образцы приближаются по совокупности показателей к нормальному элементу Вестона. Особый тип стабилитронов, высоковольтные лавинные диоды («подавители переходных импульсных помех», «суппрессоры», «TVS-диоды») применяется для защиты электроаппаратуры от перенапряжений.)
Стабисторы (Стаби́стор (ранее нормистор) — полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе слабо зависит от тока). Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации[1], которое составляет примерно 0,7 В. Последовательное соединение двух или трёх стабисторов даёт возможность получить удвоенное или утроенное значение напряжения стабилизации. Некоторые типы стабисторов представляют собой единый набор с последовательным соединением отдельных элементов.
Стабисторам присущ отрицательный температурный коэффициент сопротивления, то есть напряжение на стабисторе при неизменном токе уменьшается с увеличением температуры. В связи с этим стабисторы используют для температурной компенсации стабилитронов с положительным коэффициентом напряжения стабилизации.
Основная часть стабисторов — кремниевые диоды. Кроме кремниевых стабисторов промышленность выпускает и селеновые поликристаллические стабисторы, которые отличаются простотой изготовления, а значит, меньшей стоимостью. Однако селеновые стабисторы имеют меньший гарантированный срок службы (1000 ч) и узкий диапазон рабочих температур.)
Варикапы (Варикап (от англ. vari(able) — «переменный», и cap(acity) — «ёмкость») — полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n перехода от обратного напряжения. Варикапы применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.
Обратное напряжение на диоде.
При отсутствии внешнего напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле. Если к диоду приложить обратное напряжение, то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкивает электроны в глубь n-области, в результате чего происходит расширение обеднённой области p-n-перехода, которую можно представить как простейший плоский конденсатор, в котором обкладками служат границы области. В таком случае, в соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено лишь толщиной базы, далее которой переход расширяться не может. По достижении этого минимума с ростом обратного напряжения ёмкость не изменяется.
Промышленностью выпускаются варикапы как в виде дискретных элементов (например, КВ105, КВ109, КВ110, КВ114, BB148, BB149), так и в виде варикапных сборок (например, КВС111).)
Светодиоды (Светодио́д или светоизлучающий диод (СД, СИД, LED) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра. Его спектральные характеристики зависят во многом от химического состава использованных в нём полупроводников. Иными словами, кристалл светодиода излучает конкретный цвет (если речь идёт об СД видимого диапазона), в отличие от лампы, излучающей более широкий спектр и где конкретный цвет отсеивается внешним светофильтром.
При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).
Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).
Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.)