
- •Содержание
- •Введение
- •Тема 1 Введение в линейное программирование
- •1.1 Исторический экскурс
- •1.2 Ограничения в модели линейного программирования
- •1.3 Графическое решение задачи линейного программирования
- •1.4 Графический анализ чувствительности
- •1.4.1 Изменение коэффициентов целевой функции
- •1.4.2 Стоимость ресурсов
- •Контрольные вопросы
- •Тема 2 Симплекс-метод
- •2.1 Общая постановка задачи линейного программирования
- •2.2 Некоторые свойства планов
- •2.3 Алгоритм симплекс-метода
- •Контрольные вопросы
- •Тема 3 Двойственная задача и анализ чувствительности
- •3.1 Постановка двойственной задачи
- •3.2 Основные теоремы о двойственности
- •3.3 Решение двойственных задач
- •3.4 Двойственный симплекс-метод
- •Контрольные вопросы
- •Тема 4 Анализ чувствительности оптимального решения
- •4.1 Матричное представление симплекс-таблиц
- •Анализ чувствительности
- •4.2.1 Изменения, влияющие на допустимость решения
- •4.2.2 Изменения, влияющие на оптимальность решения
- •Контрольные вопросы
- •Тема 5 Целочисленное линейное программирование
- •5.1 Метод ветвей и границ
- •Пример 5.1
- •5.2 Метод отсекающих плоскостей
- •Пример 5.2
- •6.1.2 Интерпретация метода потенциалов как симплекс-метода
- •6.1.3 Определение начального решения
- •6.1.4 Метод потенциалов
- •6.2 Задача о назначениях
- •Контрольные вопросы
- •Тема 7 Основы сетевого планирования
- •7.1 Основные понятия теории графов
- •Пример 7.1 График реконструкции промышленного цеха
- •7.2 Метод критического пути
- •Построение временного графика
- •Определение запасов времени
- •Контрольные вопросы
- •Тема 8 Задача о максимальном потоке
- •8.1 Постановка задачи о максимальном потоке
- •8.2 Решение задачи о максимальном потоке. Алгоритм Фалкерсона
- •8.3 Алгоритм Эдмондса-Карпа
- •Контрольные вопросы
- •Приложение а
- •Библиографический список
- •Заключение
Заключение
Целью данного курса лекций является помощь студентам в приобретении знаний по теоретическим основам методов оптимизации и получении твердых навыков решения практических задач.
Для достижения этой цели в курсе изложены основные понятия, определения, теоремы методов оптимизации, приведены примеры решения типовых задач.
Особое внимание уделено теории двойственности и связанных с ней двойственному симплекс-методу, матричному представлению симплекс-метода, с помощью чего подробно излагается анализ на чувствительность линейных задач.
Кроме того, рассматриваются методы целочисленного программирования: метод ветвей и границ и метод отсечения, а также метод потенциалов для решения транспортных задач и венгерский метод для решения задачи о назначениях.
Две последние темы курса посвящены сетевому программированию. В них вводится определение сетевого графика, излагаются теория критического пути и решение задачи о максимальном потоке
Материал изложен логически последовательно, в доступной для студентов форме, по возможности сопровождается доказательствами теорем и многочисленными примерами решения задач.
Материал, изложенный в курсе лекций, изучается на 3 курсе в V семестре дисциплины «Методы оптимизации» в объеме 18 часов лекционных и 36 часов лабораторных занятий, приведенных в методических указаниях «Решение задач линейного и сетевого программирования» [4] и лабораторном практикуме «Методы оптимизации» [5].
Александр Сергеевич Михайлов
МЕТОДЫ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
Курс лекций
Отв. Редактор доц. Г.В.Ващенко
Редактор РИЦ Л.М.Буторина
Подписано в печать 10.10.2011
Формат 60×84 1/16. Изд. №2/9(2011).
Тираж 100экз. Уч.-изд.л.3,75.
Заказ №
Редакционно-издательский центр СибГТУ
660049, г.Красноярск, пр. Мира, 82
Телефон (391) 227-69-90
Факс (391) 211-97-25