Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
74-105.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
365.9 Кб
Скачать

90. Целочисленное программирование

Целочисленное программирование — раздел математического программирования, в котором на все или некоторые переменные дополнительно накладывается ограничение целочисленности. Простейший метод решения задачи целочисленного программирования — сведение её к задаче линейного программирования с проверкой результата на целочисленность. раздел математического программирования, в котором исследуется задача оптимизации (максимизации пли минимизации) функции нескольких переменных, связанных рядом уравнений и (или) неравенств и удовлетворяющих условию целочисленности (используются также термины дискретное программирование, дискретная оптимизация). Источником задач Ц. п. является техническая, экономическая и военная проблематика. Условие целочисленности переменных формально отражает: а) физич. неделимость объектов (напр., при размещении предприятий или выборе варианта боевых действий); б) конечность множества допустимых вариантов, на к-ром проводится оптимизация (напр., множества перестановок в задачах упорядочения); в) наличие логич. условий, выполнение или невыполнение к-рых влечет изменение вида целевой функции и ограничений задачи. Наиболее изученной и распространенной задачей Ц. п. является т. н. задача целочисленного линейного программирования: максимизировать.

Форма записи:

при условиях

j = 1, 2, . .., п, xj - целые для j = 1, ..., р, где а ij, bi, cj- заданные целые числа, xj- переменные.

91. Примеры задач целочисленного программирования

Примеры задач целочисленного линейного программирования. При решении многих задач нецелочисленное решение не имеет смысла. Раздел математического программирования, в котором на экстремальные задачи налагается условие дискретности переменных при конечной области допустимых решений, называется дискретным программированием. При наличии условия целочисленности имеется в виду подраздел дискретного программирования - целочисленное программирование. В экономике много задач с физической неделимостью объектов, предметов и факторов расчета. К примеру, нельзя построить 1,7 здания, 6,1 завода, 1,07 автомобиля, произвести 1,7 замера, осуществить 3,4 путешествия, купить 4,5 туристических путевок.

Задача о рюкзаке

Контейнер оборудован m отсеками вместимостью для перевозки n видов продукции . Виды продукции характеризуются свойством неделимости, т.е. их можно брать в количестве 0, 1, 2, ... единиц. Пусть - расход i-го отсека для перевозки единицы j-ой продукции. Обозначим через полезность единицы j-ой продукции. Требуется найти план перевозки, при котором максимизируется общая полезность рейса.

Задача о назначении

Пусть требуется выполнить n различных работ и имеется n механизмов (машин) для их выполнения, причем каждый механизм может использоваться при любом типе работ. Производительность каждого механизма на различных работах может быть различной. Пусть каждый механизм может выполнять только одну какую-либо работу. Задача заключается в таком распределении механизмов по работам, при котором общая производительность будет максимальной.

Задача коммивояжера

Коммивояжер должен посетить один, и только один, раз каждый из n городов и вернуться в исходный пункт. Его маршрут должен минимизировать суммарную длину пройденного пути. Добавляется условие прохождение маршрута через все города, т.е. так называемое условие цикличности. Иначе, маршрут должен представлять собой замкнутую ломаную, без пересечений в городах-точках.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]