
- •74. Вырожденный случай.
- •75. Нахождение исходного (опорного) базисного решения задачи лп.
- •76. Свойство двойственности задач лп.
- •77. Несимметричные двойственные задачи.
- •78. Симметричные двойственные задачи
- •79. Теоремы двойственности.
- •80. Виды математических моделей двойственных задач
- •81. Транспортная задача.
- •82. Математическая постановка основной тз по критерию стоимости
- •83. Задача о назначениях.
- •Исходные параметры модели задачи о назначениях
- •Искомые параметры
- •84. Нахождение опорного плана.
- •85. Метод потенциалов.
- •86. Определение потенциалов пунктов
- •Алгоритм
- •87. Открытая модель тз.
- •88. Венгерский метод Алгоритм венгерского метода.
- •89. Транспортная задача по критерию времени
- •90. Целочисленное программирование
- •91. Примеры задач целочисленного программирования
- •92. Методы решения задач целочисленного программирования
- •93. Методы отсекающих плоскостей
- •94. Метод ветвей и границ
- •95. Алгоритм метода ветвей и границ
- •96. Задача коммивояжёра
- •97. Динамическое программирование
- •98. Области применения моделей динамического программирования см. Вопрос 9
- •99. Задача о дилижансах см. Вопрос 10.
- •100. Задача управления запасами
- •Математическое описание задач динамического программирования
- •Алгоритм решения методом динамического программирования
- •103. Задача распределения ресурсов
- •Нелинейное программирование
- •105. Классификация нелинейных задач и методов их решения
83. Задача о назначениях.
Задача о назначениях – это распределительная задача, в которой для выполнения каждой работы требуется один и только один ресурс (один человек, одна автомашина и т.д.), а каждый ресурс может быть использован на одной и только одной работе. То есть ресурсы не делимы между работами, а работы не делимы между ресурсами. Таким образом, задача о назначениях является частным случаем транспортной задачи. Задача о назначениях имеет место при назначении людей на должности или работы, автомашин на маршруты, водителей на машины, при распределении групп по аудиториям, научных тем по научно-исследовательским лабораториям и т.п.
Исходные параметры модели задачи о назначениях
n – количество ресурсов, m – количество работ.
ai = 1 – единичное количество ресурса Ai (i =1,n), например: один работник; одно транспортное средство; одна научная тема и т.д.
bj = 1 – единичное количество работы Bj (j =1,m), например: одна должность; один маршрут; одна лаборатория.
cij – характеристика качества выполнения работы Bj с помощью ресурса Аi. Например, компетентность i-го работника при работе на j-й должности; время, за которое i-е транспортное средство перевезет груз по j-му маршруту; степень квалификации i-й лаборатории при работе над j-й научной темой.
Искомые параметры
xij – факт назначения или неназначения ресурса Аi на работу Bj:
L(X) – общая (суммарная) характеристика качества распределения ресурсов по работам.
Задача о назначениях является типичным примером оптимального
принятия управленческих решений. Эта задача позволяет
распределить объекты из некоторого множества по группе субъектов
из другого множества и это распределение должно соответствовать
оптимальности одного или нескольких итоговых показателей.
Пусть
имеется n
работ и n
механизмов и
задана производительность
i-го
механизма на j-ой
работе. Требуется установить взаимно
однозначное соответствие между
механизмами и работами так, чтобы общая
производительность была максимальной.
Для
построения математической модели введем
переменные
,
принимающие значения 0 или 1 в зависимости
от того, назначен или нет i-ый
механизм на j-ую
работу. Получаем следующую задачу:
=1
(j=1,2,…,n)
=1
(i=1,2,…,n)
84. Нахождение опорного плана.
Существует несколько простых схем построения первоначального опорного плана транспортной задачи.
1) Метод северо-западного угла.
Не учитывая стоимости перевозки единицы груза начинается удовлетворение потребностей первого потребителя за счет запаса первого поставщика. Далее переходим из одной клетки в другую по правилу «вниз и вправо», нагружая каждую клетку по максимуму.
2) Метод минимальной стоимости.
Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую и в клетку, которая ей соответствует, помещают меньшее из чисел или . Затем из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя. Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.
3) Метод двойного предпочтения.
В каждом столбце отмечают знаком * клетку с наименьшей стоимостью. Затем то же проделывают в каждой строке. В результате некоторые клетки имеют отметку **. В них находится минимальная стоимость как по столбцу, так и по строке. В эти клетки помещают максимально возможные объемы перевозок, каждый раз исключая из рассмотрения соответствующие столбцы и строки. Затем распределяют перевозки по клеткам, отмеченным знаком V. В оставшейся части таблицы перевозки распределяют по наименьшей стоимости. Опорный план, полученный таким образом, наиболее близок к оптимальному.