Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
74-105.docx
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
365.9 Кб
Скачать

76. Свойство двойственности задач лп.

С каждой задачей ЛП связана другая задача, которая называется двойственной или сопряженной. Первоначальная задача ЛП называется исходной или прямой. Связь между прямой и двойственной задачами заключается в том, что решение одной из них может быть получено из решения другой.

77. Несимметричные двойственные задачи.

Исходная задача имеет вид:

(5)

,

или, в матричной форме,

(6)

Двойственная задача в несимметричной форме имеет вид

(7)

или, в матричной форме,

(8)

Обратите внимание на то, что в несимметричной двойственной задаче не накладывается условие неотрицательности переменных. Если исходная задача линейного программирования записана в произвольной форме, то для записи двойственной задачи следует сначала записать исходную задачу в канонической или стандартной форме, а затем выписать двойственную задачу.

78. Симметричные двойственные задачи

Рассмотрим задачу линейного программирования в стандартной форме

(1)

,

или, в матричной форме,

(2)

Рассмотрим теперь следующую задачу

(3)

,

или, в матричной форме,

(4)

Пара задач (1) и (3) (или, в матричной форме, пара задач (2) и (4)) называются двойственными друг другу задачами в симметричной форме.

79. Теоремы двойственности.

Теорема 1: Если одна из двойственных задач имеет оптимальное решение, то другая также имеет оптимальное решение, причем для любых оптимальных решений выполняется равенство

Если одна из двойственных задач неразрешима из-за (или , то другая задача также не имеет допустимых решений.

Т еорема 2: Для оптимальности допустимых решений и пары двойственных задач необходимо и достаточно, чтобы они удовлетворяли системе уравнений

=0

0

Если в оптимальном решении одной из двойственных задач какая-либо переменная строго больше нуля, то соответствующее ей ограничение в другой двойственной задаче выполняется как строгое равенство, и наоборот, если при оптимальном решении одной из двойственных задач какое-либо ограничение выполняется как строгое неравенство, то соответствующая ему переменная в оптимальном решении другой задачи равна нулю.

80. Виды математических моделей двойственных задач

На основании рассмотренных несимметричных и симметричных двойственных задач можно заключить, что математические модели пары двойственных задач могут иметь один из следующих видов.

Н е с и м м е т р и ч н ы е з а д а ч и

(1) Исходная задача Двойственная задача

Zmin = CX; fmax = YA0;

AX = A0; YA С.

X 0.

(2) Исходная задача Двойственная задача

Zmax = CX; fmin = YA0;

AX = A0; YA С.

X 0.

С и м м е т р и ч н ы е з а д а ч и

(3) Исходная задача Двойственная задача

Zmin = CX; fmax = YA0;

AXA0; YA С.

X 0. Y 0.

(4) Исходная задача Двойственная задача

Zmax = CX; fmin = YA0;

AXA0; YA С.

X 0. Y 0.

Таким образом, прежде чем записать двойственную задачу для данной исходной, систему ограничений исходной задачи необходимо привести к соответствующему виду.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]