Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-60.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
2.18 Mб
Скачать

8) Динамическое программирование. Основные понятия и определения.

Динамическое программирование, раздел математики, посвящённый теории и методам решения многошаговых задач оптимального управления.

В Д. п. для управляемых процессов среди всех возможных управлений ищется то, которое доставляет наименьшее или наибольшее значение целевой функции — некоторой числовой характеристике процесса. Под многошаговостью понимают либо многоступенчатую структуру процесса, либо разбиение управления на ряд последовательных этапов (шагов), соответствующих, как правило, различным моментам времени. Т. о., в названии "Д. п." под "программированием" понимают "принятие решений", "планирование", а слово "динамическое" указывает на существенную роль времени и порядка выполнения операции в рассматриваемых процессах и методах. Методы Д. п. являются составной частью методов, используемых в исследовании операций, и применяются как в задачах оптимального планирования, так и при решении различных технических проблем (например, в задачах определения оптимальных размеров ступеней многоступенчатых ракет, в задачах оптимального проектирования прокладки дорог).

Методы Д. п. находят применение не только в дискретных, но и в непрерывных управляемых процессах, например в таких процессах, когда решения надо принимать в каждый момент некоторого интервала времени. Д. п. дало новый подход к задачам вариационного исчисления.

Хотя метод Д. п. существенно упрощает исходные задачи, однако непосредственное его применение, как правило, сопряжено с громоздкими вычислениями. Для преодоления этих трудностей разрабатываются приближённые методы Д. п.

Динамическое программирование обычно придерживается двух подходов к решению задач:

  • нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач.

  • восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи. Этот способ лучше нисходящего программирования в смысле размера необходимого стека и количества вызова функций, но иногда бывает нелегко заранее выяснить, решение каких подзадач нам потребуется в дальнейшем.

9) Области применения моделей динамического программирования.

Модели динамического программирования могут применяться, например, при разработке правил управления запасами, устанавливающими момент пополнения запасов и размер пополняющего заказа; при разработке принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию; при распределении дефицитных капиталовложений между возможными новыми направлениями их использования; при составлении календарных планов текущего и капитального ремонта сложного оборудования и его замены; при разработке долгосрочных правил замены выбывающих из эксплуатации основных фондов и т.д.  Динамическое программирование часто помогает решить задачу, переборный алгоритм для которой потребовал бы очень много времени. Этот метод использует идею пошаговой оптимизации. В этой идее есть принципиальная тонкость: каждый шаг оптимизируется не сам по себе, а с "оглядкой на будущее", на последствия принимаемого "шагового" решения. Оно должно обеспечить максимальный выигрыш не на данном конкретном шаге, а на всей совокупности шагов, входящих в операцию.  Метод динамического программирования может применяться только для определенного класса задач. Эти задачи должны удовлетворять таким требованиям:

  1. Задача оптимизации интерпретируется как n-шаговый процесс управления.

  2. Целевая функция равна сумме целевых функций каждого шага.

  3. Выбор управления на k-м шаге зависит только о состояния системы к этому шаге, не влияет на предшествующие шаги (нет обратной связи).

  4. Состояние sk после k-го шага управления зависит только от предшествующего состояния sk-1и управления xk (отсутствие последействия).

  5. На каждом шаге управление Xk зависит от конечного числа управляющих переменных, а состояние sk- от конечного числа параметров.

В основе решения всех задач динамического программирования лежит "принцип оптимальности" Беллмана, который выглядит следующим образом:  Каково бы ни было состояние системы S в результате какого-либо числа шагов, на ближайшем шаге нужно выбирать управление так, чтобы оно в совокупности с оптимальным управлением на всех последующих шагах приводило к оптимальному выигрышу на всех оставшихся шагах, включая данный. Этот принцип впервые был сформулирован Р. Беллманом в 1953 г. Беллманом четко были сформулированы и условия, при которых принцип верен. Основное требование- процесс управления должен быть без обратной связи, т.е. управление на данном шаге не должно оказывать влияния на предшествующие шаги. Принцип оптимальности утверждает, что для любого процесса без обратной связи оптимальное управление таково, что оно является оптимальным для любого подпроцесса по отношению к исходному состоянию этого подпроцесса. Поэтому решение на каждом шаге оказывается наилучшим с точки зрения управления в целом.