
- •Энергетические показатели трансформатора.
- •4. Моменты асинхронного двигателя.
- •5. Поясните устройство и принцип действия генератора и дв-ля постоянного тока. Назначение и устройство коллектора в машинах постоянного тока (покажите принцип выпрямления эдс).
- •6. Способы регулирования активной и реактивной мощности синхронной машины
- •7. Понятие об электроприводе, как электромеханической системе.
- •9. Система генератор – двигатель (гд).
- •10. Система тиристорный преобразователь – двигатель (тп – д).
- •11. Частотное управление асинхронными двигателями.
- •Законы частотного регулирования
- •Статические механические характеристики ад при частотном управлении.
- •12. Энергетические ресурсы.
- •Доказанные запасы первичных энергоресурсов (пэр) в мире
- •13. Теплоэлектропроизводящие установки.
- •14. Паровые котельные установки.
- •15. Водогрейные котельные установки.
- •16. Тепловые сети и теплообменники.
- •17. Теплопотребление.
- •18. Холодильные машины, тепловые насосы.
- •19. Общая структура водоснабжения промышленного предприятия.
- •20. Задачи энергоаудита. Общие этапы энергоаудита и их содержание.
- •22. Автоматизированные системы контроля и учёта энергопотребления (аскуэ)
- •24. Общий подход к проектированию суим. Осн.Этапы исследования и проектирования суим. Стадии проектирования, регламентированные госТом.
- •25. Регуляторы суим.
- •1. Пропорциональный регулятор (п-регулятор).
- •2. Интегральный регулятор (и-регулятор).
- •3. Дифференциальный регулятор (д-регулятор).
- •4. Пропорционально-интегральный регулятор (пи-регулятор).
- •6. Пропорционально-интегрально-дифференциальный регулятор (пид-регулятор).
- •26. Виды сп в зависимости от параметров питающей сети и типа приводного электродвигателя.
- •27. Однофазные и трехфазные схемы включения вентилей. Достоинства и недостатки.
- •28. Угол управления выпрямителем, угол управления инвертором, угол коммутации.
15. Водогрейные котельные установки.
Для централизованного теплоснабжения крупных промышленных предприятий, городов и отдельных районов в настоящее время применяются стальные водогрейные котлы большой мощности.
Типоразмер
|
Расчетная те-плопроизво-дительность, МДж/с
|
Поверхность нагрева, м2
|
Расчетный расход во- ды, кг/с
|
Расчетные температуры воды, °С |
Перепад давления воды, Мпа
|
Вид топлива
|
КПД брутто при расчетной произ- водительности, % |
||||
на входе |
на выходе |
||||||||||
ТНГ-4 |
5,0 |
160 |
15,0 |
70 |
150 |
— |
Газ |
90 |
|||
КВ-ГМ-4 |
4,65 |
127 |
13,8 |
70 |
150 |
0,12 |
Газ или мазут |
90,5 или 86 |
|||
КВ-ТС-4 |
4,65 |
127 |
13,8 |
70 |
150 |
0,10 |
Каменные или |
82 или 81 |
|||
|
|
|
|
|
|
|
бурые угли |
|
|||
КВ-7М-6.5 |
7,55 |
199 |
22,2 |
70 |
150 |
0,12 |
Газ или мазут |
91 или 87 |
Водогрейные котлы предназначены для получения горячей воды заданных параметров главным образом для отопления. Они работают по прямоточной схеме с постоянным расходом воды. Обычно воду тепловой сети в котлах подогревают от 70—104 до 150… 170°С.
В прямоточных котлах (см. рис. 3.2, в) нет циркуляционного контура, и многократной циркуляции воды, отсутствует барабан, вода прокачивается питательным насосом через экономайзер, испарительные-поверхности и пароперегреватель, включенные последовательно. Следует отметить, что прямоточные котлы используют воду более высокого качества. Вся вода, поступающая в испарительный тракт на выходе из него полностью превращается в пар, т.е. в этом случае кратность циркуляции Кп = 1.
Автоматизированный водогрейный котел КВГ-1,25-95 предназначен для водяных закрытых систем теплоснабжения с избыточным давлением до 1,0 Мпа (10 кгс/см2).
Для предотвращения накипеобразования на внутренней поверхности трубок экранов котлов и защиты их от коррозии в обратную сетевую воду подмешивают антинакипин марки Н-50. Антинакипин применяется для закрытых систем теплоснабжения с нагревом до 115С, давлением в обратном теплопроводе до 6 кгс/см2, при подпитке до 3 т/час.
Локальные системы автоматического регулирования
Водогрейные котлы отличаются от паровых наличием водяного контура вместо водо-парового. Это не требует ряда локальных систем регулирования – уровня воды в барабане, температуры пара через пароохладители, продувки котла. С другой стороны появляются новые контуры регулирования в водяном тракте.
Для уменьшения интенсивности наружной коррозии труб водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы при работе на природном газе равна 60 С. Для обеспечения этого необходимо подавать некоторое количество горячей воды, вышедшей из водогрейных котлов, снова на вход в котел для смешения с водой из обратного трубопровода и подпиточной водой.
Часть воды из обратной линии, минуя котлы, подают по линии перепуска через регулировочный клапан в подающую магистраль, где она, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в прямом трубопроводе.
Наличие линий рециркуляции и перепуска воды приводит к специфичным режимам работы водогрейных котлов. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. С другой стороны, при качественном регулировании теплопотребления в стационарном режиме требуется постоянство расхода теплоносителя в тепловой сети, постоянство разницы давлений в прямом и обратном трубопроводах у потребителя для реализации проектных гидравлических настроек теплопотребления. Необходима автоматизация.
Способы сжигания топлива и горелочные устройства.
Топочное устройство, или топка, является основным элементом котельного агрегата.
Слоевой процесс горения характерен тем, что в нем поток воздуха встречает при своем движении неподвижный или медленно движущийся слой топлива и, взаимодействуя с ним, превращается в поток топочных газов.
Факельный способ. В отличие от слоевого этот процесс (рис. 5.5, б) характеризуется непрерывностью движения в топочном пространстве частичек топлива вместе с потоком воздуха и продуктов сгорания, в котором они находятся во взвешенном состоянии.
Жидкое топливо предварительно распыливается в форсунках в очень мелкие капли, чтобы капельки не выпадали из потока и успевали полностью сгореть за короткое время нахождения в топке. Газообразное топливо подается в топку через горелки и не требует I особой предварительной подготовки.
Вихревой способ. В рассмотренных факельных топках частицы топлива сгорают в объеме топки на лету. Длительность пребывания их в топочном пространстве не превышает времени 'пребывания продуктов сгорания в топке и составляет 1,5... 3 с. В циклонных топках, которые предназначены для сжигания мелкодробленого топлива и грубой пыли, крупные частицы угля находятся во взвешенном состоянии столько времени, сколько это необходимо для полного выгорания их независимо от длительности пребывания продуктов сгорания в топке.
В них сжигают достаточно мелкие частицы угля (обычно мельче 5 мм), а необходимый для горения воздух подают с огромными (до 100 м/с) скоростями по касательной к образующей циклона-В топке создается мощный вихрь, вовлекающий частицы в циркуляционное движение, в котором они интенсивно обдуваются потоком (см. рис. 5.5, в).
Сжигание в кипящем слое. Слой мелкозернистого материала, продуваемый снизу вверх воздухом со скоростью, превышающей предел устойчивости плотного слоя, но недостаточной для выноса частиц из слоя, создает циркуляцию. Интенсивная циркуляция частиц в ограниченном объеме камеры создает впечатление бурно кипящей жидкости. Значительная часть воздуха проходит через такой слой в виде пузырей, сильно перемешивающих мелкозернистый материал, что еще больше усиливает сходство с кипящей жидкостью и объясняет происхождение названия.
Способ сжигания в псевдоожиженном (кипящем) слое (см. рис. 5.5, г) является в определенном смысле промежуточным между слоевым и камерным. Его преимуществом является возможность сжигания относительно мелких кусочков топлива (обычно мельче 5... 10 мм) при скорости воздуха 0,1...0,5 м/с.