- •1. Место силовых преобразователей в электроприводе.
- •2.Силовые полупроводниковые приборы: достоинства, классификация.
- •3 Силовые неуправляемые вентили, вольтамперные характеристики, параметры.
- •4 Силовые транзисторы, вольтамперные характеристики.
- •5 Силовые тиристоры.
- •6 Системы параметров силовых полупроводниковых приборов. Примеры этих параметров.
- •8 Схемы выпрямления переменного напряжения. Форма выпрямленного напряжения. Особенности этих схем.
- •Трехфазная нулевая схема выпрямления.
- •9 Работа трехфазного нулевого выпрямителя на неуправляемых вентилях при мгновенной коммутации. Значение выпрямленной эдс: . Неуправляемый выпрямитель при мгновенной
- •Рабочий процесс
- •Величина эдс неуправляемого выпрямителя.
- •Токи вторичных и первичных обмоток питающего трансформатора для трехфазной нулевой схемы выпрямления.
- •Рабочие процессы в тиристорном преобразователе при мгновенной коммутации. Зависимость . Регулировочные характеристики.
- •Коммутация токов в фазах питающего трансформатора тиристорного преобразователя при переключении вентилей.
- •Величина мгновенного напряжения на нагрузке в зоне коммутации токов. Средняя величина падения напряжения в тп, связанная с коммутацией ( )
- •Внешние характеристики тп при непрерывном и прерывистом токе в нагрузке.
- •Обращение потока мощности в электромашинной системе электропривода и в системе тп-д.
- •Особенности инверторного режима работы тп. Понятие «опрокидывание» инвертора. Ограничение угла .
- •Особенности работы выпрямителя по мостовой схеме Ларионова. Полууправляемый выпрямитель по мостовой схеме.
- •Принцип построения эквивалентных многофазных схем. Способы реализации фазового сдвига при построении эквивалентных многофазных схем
- •19 Требования, предъявляемые к параметрам управляющих импульсов тп.
- •Основные узлы многоканальной сифу.
- •21 Вертикальный и интегральный принципы фазосмещения в сифу тп. Способ обеспечения линейной зависимости .
- •22 Основные узлы сифу. Принципы их функционирования. Синхронизирующие устройства (су).
- •Фазосдвигающее устройство (фсу).
- •24 Совместное управление комплектами реверсивных тп. Природа уравнительных токов.
- •25 Согласование статических характеристик реверсивных групп Безлюфтовое согласование
- •Линейное (симметричное) согласование.
- •26 Одноканальные и двухканальные системы регулирования тока при совместном управлении реверсивными тп
- •27. Раздельное управление реверсивными группами. Автоматический выбор работающей группы в зависимости от знака ошибки регулирования.
- •31.Влияние работы вентельного электропривода на питающую сеть.
- •32. Способы увеличения коэффициента мощности.
- •34. Принципы импульсного регулирования постоянного напряжения
- •Принципы действия некоторых тиристорных ключей импульсных преобразователей. Способы реализации импульсных элементов (ключей).
- •Преобразователи частоты. Классификация. Автономный инвертор.
- •Пч с непосредственной связью нагрузки с сетью.
- •Аварийные режимы работы тп. Защита тп от аварийных токов. Средства и способы защиты от коротких замыканий и перегрузок.
- •6.1.1. Защита запиранием тиристоров.
- •6.1.2.Защита посредством автоматических выключателей (автоматов).
- •6.1.3. Защита плавкими предохранителями.
- •6.2.1. Защита с помощью r-c цепочек.
- •6.2.2. Защита от перенапряжений, возникающих при отключении нагрузки с большой индуктивностью.
Токи вторичных и первичных обмоток питающего трансформатора для трехфазной нулевой схемы выпрямления.
Ток, протекающий по вторичным обмоткам трансформатора под действием ЭДС этих обмоток, обусловливает величину тока в нагрузке- Id. Ток в нагрузке складывается из прямоугольных импульсов фазных токов и, при принятых допущениях является идеально гладким.
В соответствии со 2-ым законом Кирхгофа, сумма токов в каждом замкнутом магнитном контуре должна быть равна нулю.
Рис 12
Кроме того, в соответствии с 1-ым законом Кирхгофа, сумма всех трех токов первичных обмоток трансформатора равняется нулю
iA ia + ib iB = 0
iB ib + ic iC = 0
iA + iB + iC = 0
В этой системе шесть неизвестных: три значения первичных токов и три- вторичных. Однако вторичные токи могут быть определены (открыт VD1):
ia = Id ; ib = ic = 0
Тогда iA= (2/3) Id ; iB =iC = -(1/3) Id
Аналогично для остальных:
iB = (2/3) Id ; iA =iC = -(1/3) Id
iC= (2/3) Id ; iA =iB = -(1/3) Id .
При принятых условиях и допущениях (kтр =1, трансформатор и вентили идеальные) диаграммы токов во всех обмотках трансформатора выглядят следующим образом:
При ктр > 1 iA= (1/ kтр)*(2/3) Id и т.д.
Суммарная намагничивающая сила по каждому из стержней в данной схеме оказывается отличной от нуля. Для А (при открытом VD1):
FA = (ia - iA)*w = (Id - (2/3) Id )*w = (1/3)w *Id
Для А (при закрытом VD1)::
FA = (ia - iA)*w = (0 - (1/3) Id )*w = (1/3)w *Id
Аналогичное наблюдается в других стержнях трансформатора. Таким образом, характерной особенностью трехфазной нулевой схемы является наличие нескомпенсированных намагничивающих сил и, вызванных ими потоков вынужденного намагничивания.
Для избежания этого приходится завышать сечение магнитопровода и, тем самым, утяжелять трансформатор. Это является причиной того, что трехфазная нулевая схема в практике применяется нечасто и только для небольшой мощности электропривода.
Рабочие процессы в тиристорном преобразователе при мгновенной коммутации. Зависимость . Регулировочные характеристики.
Неуправляемый выпрямитель может обеспечить только одно значение ЭДС на выходе (ed0), т.е. максимально возможное в схеме. Для получения возможности регулирования величины ЭДС преобразователь выполняют управляемым, включая вместо неуправляемых вентилей, тиристоры.
Если управляющие импульсы подавать на управляющие электроды тиристоров в моменты естественной коммутации, то получим также, как и при неуправляемых вентилях, максимально возможную ЭДС Ed0. Регулирование ЭДС в сторону ее снижения осуществляется за счет задержки включения тиристоров относительно момента естественной коммутации. Величину этой задержки характеризует угол управления тиристорами преобразователя, обозначаемый в литературе буквой .
Угол управления преобразователем () - это угол, выраженный в электрических градусах, отсчитываемый от точки естественной коммутации двух чередующихся фаз до момента включения тиристора последующей фазы.
На рис 14 показана форма ЭДС преобразователя. Ниже показаны токи, протекающие по фазным обмоткам трансформатора в предположении идеальной сглаженности тока Id и мгновенной коммутации фазных токов с предыдущей на последующую фазу.
Анализ диаграммы напряжения показывает:
а) При увеличении угла , т.е. при большей задержке управляющих импульсов Ed преобразователя снижается. Величина этого снижения, определяемая вольт - секундной площадкой Sз, тем больше, чем больше угол .
б) ЭДС преобразователя при > 30 содержит участки как положительных (S+), так и отрицательных (S-) значений вольт - секундных площадок. С увеличением угла (S+) уменьшаются, а (S-) - увеличиваются.
в) Импульсы фазных токов трансформатора, сохраняя прямоугольную форму, смещаются в сторону отставания на величину угла по отношению к точке естественной коммутации.
Величина ЭДС тиристорного преобразователя.
Определяется площадь, заключенная между кривой, отражающей функцию изменения фазной ЭДС, и осью абсцисс. Эта вольт - секундная площадь, с учетом ее знака, определяется в пределах интервала повторяемости, как определенный интеграл, нижний и верхний пределы которого соответствуют границам интервала повторяемости. Взяв отношение вычисленной площади к длине интервала повторяемости, вычисляется среднее значение ЭДС тиристорного преобразователя для интересующей нас величины .
=>Ed = Ed0 * cos .
Ее графическое представление называют регулировочной характеристикой ТП. Она имеет вид:
