- •1. Место силовых преобразователей в электроприводе.
- •2.Силовые полупроводниковые приборы: достоинства, классификация.
- •3 Силовые неуправляемые вентили, вольтамперные характеристики, параметры.
- •4 Силовые транзисторы, вольтамперные характеристики.
- •5 Силовые тиристоры.
- •6 Системы параметров силовых полупроводниковых приборов. Примеры этих параметров.
- •8 Схемы выпрямления переменного напряжения. Форма выпрямленного напряжения. Особенности этих схем.
- •Трехфазная нулевая схема выпрямления.
- •9 Работа трехфазного нулевого выпрямителя на неуправляемых вентилях при мгновенной коммутации. Значение выпрямленной эдс: . Неуправляемый выпрямитель при мгновенной
- •Рабочий процесс
- •Величина эдс неуправляемого выпрямителя.
- •Токи вторичных и первичных обмоток питающего трансформатора для трехфазной нулевой схемы выпрямления.
- •Рабочие процессы в тиристорном преобразователе при мгновенной коммутации. Зависимость . Регулировочные характеристики.
- •Коммутация токов в фазах питающего трансформатора тиристорного преобразователя при переключении вентилей.
- •Величина мгновенного напряжения на нагрузке в зоне коммутации токов. Средняя величина падения напряжения в тп, связанная с коммутацией ( )
- •Внешние характеристики тп при непрерывном и прерывистом токе в нагрузке.
- •Обращение потока мощности в электромашинной системе электропривода и в системе тп-д.
- •Особенности инверторного режима работы тп. Понятие «опрокидывание» инвертора. Ограничение угла .
- •Особенности работы выпрямителя по мостовой схеме Ларионова. Полууправляемый выпрямитель по мостовой схеме.
- •Принцип построения эквивалентных многофазных схем. Способы реализации фазового сдвига при построении эквивалентных многофазных схем
- •19 Требования, предъявляемые к параметрам управляющих импульсов тп.
- •Основные узлы многоканальной сифу.
- •21 Вертикальный и интегральный принципы фазосмещения в сифу тп. Способ обеспечения линейной зависимости .
- •22 Основные узлы сифу. Принципы их функционирования. Синхронизирующие устройства (су).
- •Фазосдвигающее устройство (фсу).
- •24 Совместное управление комплектами реверсивных тп. Природа уравнительных токов.
- •25 Согласование статических характеристик реверсивных групп Безлюфтовое согласование
- •Линейное (симметричное) согласование.
- •26 Одноканальные и двухканальные системы регулирования тока при совместном управлении реверсивными тп
- •27. Раздельное управление реверсивными группами. Автоматический выбор работающей группы в зависимости от знака ошибки регулирования.
- •31.Влияние работы вентельного электропривода на питающую сеть.
- •32. Способы увеличения коэффициента мощности.
- •34. Принципы импульсного регулирования постоянного напряжения
- •Принципы действия некоторых тиристорных ключей импульсных преобразователей. Способы реализации импульсных элементов (ключей).
- •Преобразователи частоты. Классификация. Автономный инвертор.
- •Пч с непосредственной связью нагрузки с сетью.
- •Аварийные режимы работы тп. Защита тп от аварийных токов. Средства и способы защиты от коротких замыканий и перегрузок.
- •6.1.1. Защита запиранием тиристоров.
- •6.1.2.Защита посредством автоматических выключателей (автоматов).
- •6.1.3. Защита плавкими предохранителями.
- •6.2.1. Защита с помощью r-c цепочек.
- •6.2.2. Защита от перенапряжений, возникающих при отключении нагрузки с большой индуктивностью.
27. Раздельное управление реверсивными группами. Автоматический выбор работающей группы в зависимости от знака ошибки регулирования.
Наиболее эффективным способом ограничения уравнительного тока является раздельное управление вентильными группами. В электроприводах с раздельным управлением импульсы в любом режиме работы электропривода подаются только на одну группу вентилей реверсивного преобразователя, и ток протекает только через эту группу. Так как другая группа вентилей при этом заперта, то тем самым, полностью исключается возможность возникновения уравнительных токов, и в электроприводах с раздельным управлением не требуется установка уравнительных дросселей. Это позволяет значительно сократить объем реверсивного преобразователя и примерно в (24) раза его массу.
Структурная схема реверсивного вентильного электропривода с раздельным управлением приведена на рис 55:
Важнейшей составной частью системы управления этих электроприводов является логическое переключающее устройство- ЛПУ. Это устройство на основании сопоставления командных сигналов (Uз ) и сигналов обратных связей ( Uо.н.), характеризующих действительное состояние электропривода, дает разрешение на включение тиристоров той из реверсивных групп, которая должна пропускать ток, и вырабатывает запрещающий сигнал Uз.в. (Uз.н.) , который не допускает подачи управляющих импульсов на тиристоры неработающей группы. Последнее условие должно строго выполняться, т.к. из-за отсутствия уравнительных дросселей при одновременном включении тиристоров в реверсивных группах ТПВ и ТПН возникает междуфазное короткое замыкание.
По этой же причине не допустима подача включающих импульсов на группу, вступающую в работу, до тех пор, пока не прекратится протекание тока через группу, заканчивающую работу. В связи с этим в системе управления должна быть предусмотрена токовая блокировка, работающая от датчика тока ДТ. Длительность бестоковой паузы обычно составляет (310) миллисекунд.
Для предотвращения аварийных режимов системы управления тиристорных электроприводов с раздельным управлением должны обеспечивать выполнение следующих условий:
Недопустимость одновременной подачи управляющих импульсов на обе выпрямительные группы;
Поддержание подачи управляющих импульсов на тиристоры инверторной группы при наличии тока в ней;
Запрет включения одной выпрямительной группы при наличии тока в другой;
При переключении групп должна обеспечиваться “аппаратная пауза”, в течение которой снимаются управляющие импульсы с обеих групп.
В зависимости от требуемого направления вращения и уровня скорости, и действительного направления вращения и величины фактической скорости двигателя и направления момента нагрузки производственной машины система управления должна подключать ту или иную группу преобразователя и устанавливать необходимую величину угла управления вентилей. Выбор работающей группы осуществляет ЛПУ.
Существуют два наиболее применяемых способа раздельного управления:
Управление, осуществляющее выбор работающей группы в функции знака сигнала рассогласования заданной частоты вращения двигателя и ее фактического значения;
Система самонастройки (система “сканирующей логики”).
Системы, работающие в зависимости от знака сигнала рассогласования.
На входы ЛПУ подаются два сигнала:
Сигнал наличия тока преобразователя;
Сигнал “ошибки” замкнутой системы автоматического регулирования.
Uвх = Uз - Uо.н
где: Uз - задающее напряжение. Оно задает направление вращения и уровень частоты вращения.
Uо.н. - напряжение обратной связи, характеризующее действительное направление вращения и величину частоты вращения.
т.е. включению группы “Вперед” соответствует положительное значение Uвх , работе группы “Назад” - отрицательное.
Эта возможность и используется в электроприводе рассматриваемого типа.
+ раздельного управления:
Отсутствие уравнительного тока
Более высокий КПД
Возможность полного использования трансформатора по U S
Меньше вероятность опрокидывания инвертора
- :
Усложнение системы управления
Необходима пауза между работой групп
Возможность возникновения толчков тока при переключении групп
28. Системы самонастройки (сканирующей логики) при раздельном управлении ТПР.
Работа систем самонастройки основана на автоматическом “поиске” группы, в которой существуют условия для протекания тока нагрузки.
Структурная схема реверсивного вентильного электропривода с одной из более простых систем самонастройки показана на рис 57а. На рисунке 57б приведены диаграммы, поясняющие ее работу.
Рис
57 б)
Переключения реверсивных групп осуществляются с помощью блока реверса БР, состоящего из логического переключающего устройства ЛПУ и мультивибратора МВ. Работа ЛПУ происходит, в основном, так же, как и в ранее рассмотренной схеме. Отличие состоит лишь в том, что на его переключающий вход здесь поступает не сигнал рассогласования, а знакопеременное напряжение от внешнего источника- мультивибратора МВ.(В качестве источника переменного переключающего напряжения Uпер иногда используется питающая сеть 50 Гц).
При отсутствии тока в преобразователе, мультивибратор работает в режиме автоколебаний и ЛПУ непрерывно переключается, периодически выдавая запрещающие сигналы Uз.в и Uз.н на соответствующие группы вентилей, разрешая, тем самым, попеременно работать то одной, то другой.
Если подать команду на пуск двигателя в направлении “Вперед”, то под действием напряжения управления UУ угол управления группы ТПВ в уменьшится, а угол управления группы ТПН увеличится. Тогда при очередном включении группы “Вперед” в ней возникнет ток, и двигатель начнет разгоняться в направлении “Вперед”. Одновременно с этим с датчика тока ДТ на мультивибратор и ЛПУ будет подан сигнал токовой блокировки Ui , который запретит дальнейшее переключение как мультивибратора, так и ЛПУ. Тем самым будет зафиксирована работа группы “Вперед” и заблокирована работа группы “Назад”. Это состояние будет сохраняться на протяжении всего времени протекания тока в группе “Вперед” (интервал t1- t2).
Если за счет уменьшения управляющего напряжения UУ будет подана команда на снижение частоты вращения (момент времени t2), то угол управления группы ТПВ увеличится, а группы ТПН - уменьшится. ЭДС группы “Вперед” сделается меньше ЭДС двигателя, и ток якоря начнет снижаться. После снижения последнего до значения тока удержания iуд снимется токовая блокировка с мультивибратора, последний переключится в противоположное состояние, и на ранее работавшую группу с ЛПУ поступит запрещающий сигнал Uз.в . По истечение времени аппаратной паузы tн, необходимой для снижения тока от значения тока удержания iуд до нуля, снимется запрещающий сигнал Uз.н с группы ТПН (момент времени t3). Если при этом ЭДС этой группы окажется меньше ЭДС двигателя, то через группу “Назад” потечет ток и вновь вступит в действие токовая блокировка. Последняя на этот раз зафиксирует работу группы “Назад” и запретит переключение мультивибратора и ЛПУ в противоположное состояние до тех пор, пока будет существовать ток в этой группе. Если управляющее напряжение будет изменяться в прежнем направлении, то двигатель вначале будет тормозиться в режиме рекуперативного торможения, а затем, после изменения полярности управляющего напряжения начнет разгоняться в противоположном направлении.
В системе самонастройки переключения групп начинается при любой частоте вращения и любом направлении вращения двигателя после снижения тока до нуля. Поэтому, если при снижении величины “ошибки” Uвх ЭДС работающей вентильной группы ТПВ окажется ниже ЭДС двигателя, и ток снизится до нуля, то сразу же автоматически, независимо от того, изменился знак Uвх, или нет, произойдет переключение групп, и двигатель перейдет в режим рекуперативного торможения. В рассмотренном ранее примере работы шахтной подъемной установки при приближении подъемных сосудов к точке “равновесия” может произойти несколько смен режимов работы электропривода- с двигательного на тормозной и обратно.
30. КПД и коэффициент мощности тиристорного электропривода постоянного тока
Понятие мощности, выделяемой в цепи нагрузки постоянного тока, может иметь двоякий смысл.
С одной стороны- это мощность Pd , определяемая как произведение постоянных составляющих (средних значений) выпрямленного тока Id и напряжения Ud :
Pd = Ud * Id (3-56)
С другой стороны, действительная полная мощность Pd, выделяемая в нагрузке, определяется как средняя мощность от мгновенных значений тока id и напряжения ud в нагрузке за период повторяемости формы выпрямленного напряжения:
(3-57)
где T - период повторяемости формы выпрямленного напряжения.
Разница в значениях этих мощностей обусловлена наличием пульсаций в выпрямленном напряжении и в токе нагрузки. Так, если обозначить пульсации в виде переменных составляющих id и ud, то можно записать:
(3-58)
Очевидно, что в случае идеально сглаженного тока нагрузки, когда id равен нулю (ud может быть не равен нулю), значения мощностей Pd и Pd совпадают.
Основные потери активной мощности имеют место в следующих частях тиристорных преобразователей:
В трансформаторе Pт ;
В тиристорах преобразователя Pв;
Во вспомогательных устройствах Pвсп (в системах управления, защиты, охлаждения, сигнализации и др.);
Дополнительные потери Pдоп (потери, обусловленные пульсациями напряжения и тока на нагрузке, потери при переключениях вентилей).
С учетом этих составляющих для преобразователя КПД определяется из следующего соотношения:
= (Ud Id) / (Ud Id + Pт +Pв +Pвсп +Pдоп) (3-59)
Изготавливаемые в настоящее время ТП большой мощности имеют КПД в пределах (0.850.9). ТП малой и средней мощности имеют КПД (0.70.8).
Коэффициентом мощности в установках переменного тока называется отношение активной мощности, потребляемой установкой к полной.
При определении коэффициента мощности ТП необходимо учитывать несинусоидальность потребляемого им из сети тока.
На рис 60 представлены диаграммы напряжения u1 питающей сети и тока i1, потребляемого однофазным мостовым ТП из сети при допущении идеальной сглаженности выпрямленного тока (Lн = ) и мгновенной коммутации.
Из несинусоидального тока i1 может быть выделена первая гармоника i1(1), отстающая от напряжения u1 на угол . Соответственно активная мощность P, потребляемая преобразователем, выражается следующей формулой:
P = U1 I1(1) cos (3-60)
где U1 - действующее напряжение сети;
I1(1) - действующее значение первой гармоники тока, поступающего из сети;
- угол сдвига первой гармоники тока по отношению к напряжению питающей сети.
Полная мощность, потребляемая выпрямителем, на основании общего определения может быть записана в виде:
(3-61)
где I1 - действующее значение несинусоидального тока, поступающего из сети;
In - действующее значение его n-ой гармоники.
Коэффициент мощности преобразователя:
(3-62)
Степень несинусоидальности тока в данном случае характеризуется коэффициентом искажения формы первичного тока , определяемым как отношение действующего значения первой гармоники тока к действующему значению всего тока.
Для несинусоидального тока помимо активной мощности P и реактивной мощности Q вводится понятие мощности искажения T, определяемой как:
(3-63)
Мощность искажения T характеризует степень различия в формах кривых тока и напряжения. Для рассматриваемого случая форма кривой напряжения питающей сети- синусоидальная, а тока - прямоугольная, поэтому мощность T отлична от нуля.
Из рис 60 видно, что для идеализированной схемы однофазного выпрямителя (при Lн = и угла коммутации = 0) ток i1(1) отстает от напряжения u1 на угол , равный углу . Поэтому коэффициент мощности можно выразить как:
= cos (3-64)
При синусоидальном первичном напряжении получается, что чем ближе форма первичного тока к синусоиде, тем ближе к единице коэффициент .
На рис 61 показаны формы первичного тока для различных схем преобразователей, которые получаются при идеальном сглаживании выпрямленного тока Id. Приведены, так называемые “коммутационные функции” для однофазной мостовой (а), 3-х фазной нулевой (б), 3-х фазной мостовой (в) и для 12-ти пульсной (г) схем выпрямления.
Мы видим, что по мере увеличения пульсности форма первичного тока приближается к синусоиде и, значит, коэффициент искажения приближается к единице.
Для более точного определения коэффициента мощности необходимо учитывать угол коммутации . В этом случае коэффициент сдвига (cos ) может быть определен по приближенной формуле:
cos = cos ( + (/2)) (3-65)
Угол коммутации также влияет на коэффициент , но в большинстве режимов работы, когда не превосходит 30, это влияние незначительно.
Из вышеизложенного следует, что коэффициент мощности вентильного преобразователя носит индуктивный характер (преобразователь потребляет из сети реактивную мощность) и в основном определяется углом управления .
При определении энергетического режима работы силовой установки (тиристорного преобразователя) важно выяснить, когда она является приемником электрической энергии и когда- источником. Для определения этого необходимо воспользоваться известными признаками источника и приемника, что рассмотрено в параграфе 3.3.1. Эти признаки нужно применить к таким объектам энергетического процесса, как питающая сеть и силовая установка (ТП).
Рассмотрим диаграммы напряжения и тока, изображенные на рис 60.
Здесь питающее напряжение u1 синусоидальное. Ток представлен первой гармоникой в общем несинусоидальном токе i1(1) . Из диаграммы видно, что на интервале 0-1 напряжение u1 и ток i1(1) имеют разные знаки, т.е. их направление не совпадают. Это значит, что на интервале 0-1 сеть является приемником электроэнергии, а силовое устройство, подключенное к сети, - источником.
На участке 1-2 знаки напряжения и тока одинаковы. Напряжение и ток по направлению совпадают. Здесь сеть- источник энергии, силовая установка- приемник.
В зависимости от соотношения длительности интервалов времени 0-1 и 1-2 изменяется коэффициент сдвига (cos ). Наибольшее значение он имеет при полной сонаправленности полуволны тока с полуволной напряжения сети, или при полной противонаправленности полуволны (cos = 1).
Наименьшее значение коэффициент сдвига имеет при отставании синусоиды тока от синусоиды напряжения на угол 90.
