
- •1. Место силовых преобразователей в электроприводе.
- •2.Силовые полупроводниковые приборы: достоинства, классификация.
- •3 Силовые неуправляемые вентили, вольтамперные характеристики, параметры.
- •4 Силовые транзисторы, вольтамперные характеристики.
- •5 Силовые тиристоры.
- •6 Системы параметров силовых полупроводниковых приборов. Примеры этих параметров.
- •8 Схемы выпрямления переменного напряжения. Форма выпрямленного напряжения. Особенности этих схем.
- •Трехфазная нулевая схема выпрямления.
- •9 Работа трехфазного нулевого выпрямителя на неуправляемых вентилях при мгновенной коммутации. Значение выпрямленной эдс: . Неуправляемый выпрямитель при мгновенной
- •Рабочий процесс
- •Величина эдс неуправляемого выпрямителя.
- •Токи вторичных и первичных обмоток питающего трансформатора для трехфазной нулевой схемы выпрямления.
- •Рабочие процессы в тиристорном преобразователе при мгновенной коммутации. Зависимость . Регулировочные характеристики.
- •Коммутация токов в фазах питающего трансформатора тиристорного преобразователя при переключении вентилей.
- •Величина мгновенного напряжения на нагрузке в зоне коммутации токов. Средняя величина падения напряжения в тп, связанная с коммутацией ( )
- •Внешние характеристики тп при непрерывном и прерывистом токе в нагрузке.
- •Обращение потока мощности в электромашинной системе электропривода и в системе тп-д.
- •Особенности инверторного режима работы тп. Понятие «опрокидывание» инвертора. Ограничение угла .
- •Особенности работы выпрямителя по мостовой схеме Ларионова. Полууправляемый выпрямитель по мостовой схеме.
- •Принцип построения эквивалентных многофазных схем. Способы реализации фазового сдвига при построении эквивалентных многофазных схем
- •19 Требования, предъявляемые к параметрам управляющих импульсов тп.
- •Основные узлы многоканальной сифу.
- •21 Вертикальный и интегральный принципы фазосмещения в сифу тп. Способ обеспечения линейной зависимости .
- •22 Основные узлы сифу. Принципы их функционирования. Синхронизирующие устройства (су).
- •Фазосдвигающее устройство (фсу).
- •24 Совместное управление комплектами реверсивных тп. Природа уравнительных токов.
- •25 Согласование статических характеристик реверсивных групп Безлюфтовое согласование
- •Линейное (симметричное) согласование.
- •26 Одноканальные и двухканальные системы регулирования тока при совместном управлении реверсивными тп
- •27. Раздельное управление реверсивными группами. Автоматический выбор работающей группы в зависимости от знака ошибки регулирования.
- •31.Влияние работы вентельного электропривода на питающую сеть.
- •32. Способы увеличения коэффициента мощности.
- •34. Принципы импульсного регулирования постоянного напряжения
- •Принципы действия некоторых тиристорных ключей импульсных преобразователей. Способы реализации импульсных элементов (ключей).
- •Преобразователи частоты. Классификация. Автономный инвертор.
- •Пч с непосредственной связью нагрузки с сетью.
- •Аварийные режимы работы тп. Защита тп от аварийных токов. Средства и способы защиты от коротких замыканий и перегрузок.
- •6.1.1. Защита запиранием тиристоров.
- •6.1.2.Защита посредством автоматических выключателей (автоматов).
- •6.1.3. Защита плавкими предохранителями.
- •6.2.1. Защита с помощью r-c цепочек.
- •6.2.2. Защита от перенапряжений, возникающих при отключении нагрузки с большой индуктивностью.
1. Место силовых преобразователей в электроприводе.
Понятие “автоматизированный электропривод” удобно рассматривать на пр-ре функциональной схемы, составленную из основных, входящих в него элементов.
Рис.1 Энергия, поступающая из сети, на пути к рабочему органу механизма претерпевает целый ряд преобразований. Так, СП (силовой преобразователь) преобразует электрическую энергию, потребляемую из сети, которая потребляться электродвигателем (М). М преобразует эту электр. энергию в мех. энергию вращающегося вала. Кинематическая цепь преобразует мех. энергию с одними параметрами (момент, частота вращения) в мех. энергию с другими параметрами.
Через СП проходит весь поток энергии, который можно регулировать, и тем самым реализовывать разнообразные функции, возлагаемые на электропривод. Управляющее устройство УУ - функция управления СП. На входе УУ находится система регулирования координат СРК для регулирования переменных величин, напр-р, напряжение, ток, частота вращения электрической машины, перемещение рабочего органа исполнительного механизма и др.
На СРК могут осуществляться различные воздействия - задающее воздействие, воздействие обратных связей, корректирующие воздействия, в => СРК вырабатывает результирующий сигнал, поступающий на УУ. Информация о реальном значении той переменной, которая подлежит регулированию должна поступать непрерывно в виде стандартизованных электрических сигналов, вырабатываемых датчиками различного вида. Датчики ( Д1, Д2 и т.д.) - это информационные устройства, преобразующие тот или иной вид переменной в стандартизованный сигнал.
Пунктирной линией очерчены элементы, совокупность которых определяет понятие автоматизированный электропривод. В ряде случаев схема может быть упрощена или усложнена.
2.Силовые полупроводниковые приборы: достоинства, классификация.
Достоинства:
-Малые тепловые потери ( малое активное сопротивление во вкл. состоянии, когда через них протекают большие токи, и выкл. Состоянии.)
-быстродействие
-чувствительность
-надёжность
-экономичность
Классификация:
а) По принципу действия. 1) Силовые неуправляемые вентили. 2)Силовые транзисторы. 3) Силовые тиристоры.
б) По степени управляемости. ( перевести прибор из проводящей в не проводящую и обратно). 1) Неуправляемая 2) Полу управляемая 3) Полностью управляемая группа.
В) По коммутируемой мощности. 1) малой мощности 2) средней 3)большой
Г) По рабочей частоте. 1)низкочастотные 2) импульсные 3)высокочастотные
3 Силовые неуправляемые вентили, вольтамперные характеристики, параметры.
Неуправляемый полупроводниковый вентиль представляет собой нелинейное несимметричное акт. сопр-е, величина которого зависит от полярности приложенного к прибору напряжения. При прямой полярности, когда к аноду подключен «+» полюс источника питания (+), а к катоду «-», вентиль имеет малое сопротивление. При обратной полярности питающего напряжения сопротивление вентиля большое.
Вольт - амперная характеристика ВАХ вентиля имеет прямую ветвь, расположенную в 1- ом квадранте координат “U - I” и обратную - в 3- ем квадранте. Прямое напряжение (+U) измеряется единицами или долями вольт, обратное напряжение (-U) - сотнями, или тысячами вольт. Прямые токи (+iв) составляют сотни ампер, обратные (-iв) - десятки миллиампер. На прямой ветви ВАХ можно выделить два участка: участок большого сопротивления (А) и участок малого сопротивления (Б).
Обратная ветвь ВАХ может быть разбита на три участка:
В - участок высокой проводимости (малого сопротивления)
Г - участок низкой проводимости
Д - участок высокой проводимости вследствие электрического пробоя.
Динамическое (дифференциальное) сопротивления прибора в открытом состоянии RD-это котангенс угла наклона прямой проходящей через 2 точки прямой ветви ВАХ с ординатами = 1.57 и 4.71- предельного тока и пересекающий ось U в точке числовое значение которое считается пороговым U.