
- •0. Вопросы (указатель).
- •1. Язык логики высказываний. Простые высказывания, сложные высказывания, логические связки. Роль связок в естественном языке.
- •2. Синтаксис языка логики высказываний: алфавит и правила построения формул. Семантика языка логики высказываний, интерпретация формул.
- •3. Свойства формул: общезначимость, выполнимость, противоречивость, опровержимость.
- •4. Основные схемы логически правильных рассуждений.
- •5. Основные тавтологии, выражающие свойства логических операций.
- •6. Основные правила получения тавтологий.
- •7. Логическая равносильность формул. Алгоритм проверки логической равносильности формул. Свойства отношения равносильности на множестве формул. Равносильные преобразования.
- •8. Логическое следование формул. Логические следствия и посылки. Алгоритм проверки формул на логическое следование. Признаки логического следствия. Два свойства логического следования.
- •9. Следование и равносильность формул.
- •10. Нахождение следствия для данных посылок.
- •11. Нахождение посылок для данного следствия.
- •12. Алгебра логики. Функции алгебры логики. K-значные логики.
- •13. Способы задания функций алгебры логики. Единичные и нулевые наборы функций алгебры логики. Фиктивные (несущественные) переменные.
- •14. Бинарные функции алгебры логики.
- •15. Суперпозиции и формулы. Глубина формулы. Способы записи формул.
- •16. Эквивалентные формулы. Способы установления эквивалентности формул.
- •17. Полнота и замкнутость системы функций. Функционально полные базисы. Классы Поста. Теорема Поста о полноте системы булевых функций.
- •18. Булева алгебра логических операций. Основные эквивалентные соотношения (законы) в булевой алгебре.
- •19. Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- •20. Днф, сднф, кнф, скнф. Процедуры приведения к днф и кнф.
- •2 1. Двойственность.
- •22. Алгебра Вебба, алгебра Шеффера, импликативная алгебра, коимпликативная алгебра, алгебра Жегалкина.
- •23. Полиномы Жегалкина. Процедуры приведения к пнф.
- •24. Конечно-значные логики: алгебра Вебба, алгебра Поста, алгебра Россера–Тьюкетта.
- •25. Исчисление высказываний как формальная система, множественность аксиоматизаций. Проблема выводимости. Прямой вывод.
- •26. Теорема дедукции. Связь выводимости и истинности формул в логике высказываний. Выполнимые и общезначимые формулы.
- •27. Понятие логического следования, принцип дедукции. Правило резолюций, метод резолюций. Стратегии метода резолюций.
- •29. Алгоритм построения резолюций для множества фраз Хорна.
- •30. Свойства формализованного счисления высказываний.
- •31. Предикат. Предикаты и отношения. Предикаты и функции. Предикаты и высказывания.
- •32. Синтаксис языка логики предикатов: алфавит, термы, атомы, правила построения формул.
- •33. Кванторные операции. Свободные и связанные вхождения переменных. Логический квадрат.
- •34. Численные кванторы. Ограниченные кванторы.
- •35. Множество истинности предикатов. Равносильность и следование предикатов.
- •37. Приведенная нормальная форма. Процедура получения приведенной нормальной формы.
- •38. Предваренная нормальная форма. Процедура получения предваренной нормальной формы.
- •39. Проблема разрешимости для общезначимости и выполнимости формул логики предикатов. Теорема Черча. Частные случаи.
- •40. Методы доказательства в логике предикатов.
- •41. Исчисление предикатов как формальная система. Формальный вывод в исчислении предикатов. Правило переименования свободных переменных. Правило переименования связанных переменных.
- •42. Выводимость и истинность в логике предикатов. Эквивалентные преобразования.
- •43. Предваренная, сколемовская и клаузальная формы. Алгоритм получения клаузальной формы.
- •45. Принцип логического программирования.
- •46. Применение логики предикатов в логико-математической практике.
- •47. Классификация высказываний по Аристотелю.
- •48. Методы рассуждений. Аристотелева силлогистика. Теоретико-множественная интерпретация аристотелевой силлогистики
- •49. Принцип полной дизъюнкции в предикатной форме
- •50. Метод (полной) математической индукции.
- •51. Необходимые и достаточные условия
- •52. Понятия формальной системы и формального вывода. Аксиоматическая (формальная) теория и принципы ее построения.
- •53. Вывод и выводимость в формальной теории. Разрешимые и неразрешимые формулы. Доказательство и доказуемость. Теорема формальной теории.
- •54. Основные свойства формальных систем: непротиворечивость, полнота, разрешимость. Полнота и непротиворечивость исчисления высказываний. Полнота и непротиворечивость исчисления предикатов.
- •55. Прикладные исчисления предикатов. Формальная арифметика. Теорема Генцена о непротиворечивости формальной арифметики.
- •56. Теоремы о неполноте формальных систем, смысл и значение теорем Геделя для практической информатики.
- •57. Неклассические логики.
- •58. Интуиционистская логика.
- •59. Нечеткая логика.
- •60. Модальные логики. Типы модальностей.
- •61. Временные логики. Приложение временных логик к программированию.
- •62. Алгоритмические логики. Принципы построения алгоритмической логики. Алгоритмическая логика Хоара.
- •63. Многозначные логики. Трёхзначная логика я.Лукасевича. M-значная логика э.Поста.
- •64. Предпосылки возникновения теории алгоритмов. Основные требования к алгоритмам. Подходы к уточнению понятия «алгоритм». Три основных типа универсальных алгоритмических моделей.
- •65. Машина Тьюринга. Конфигурация машины Тьюринга. Функция, правильно вычислимая по Тьюрингу. Эквивалентные машины Тьюринга. Композиция машин Тьюринга.
- •66. Вычисление предикатов на машине Тьюринга.
- •67. Универсальная машина Тьюринга. План построения универсальной машины Тьюринга.
- •68. Тезис Тьюринга.
- •69. Проблема остановки как пример алгоритмически неразрешимых проблем.
- •70. Машина Поста.
- •71. Рекурсивные функции. Примитивно-рекурсивные функции. Примитивно-рекурсивные операторы. Частично-рекурсивные функции. Тезис Черча.
- •72. Нормальные алгорифмы Маркова. Нормально вычислимые функции и принцип нормализации Маркова.
- •73. Вычислимость и разрешимость. Нумерация алгоритмов. Алгоритмически разрешимые и неразрешимые задачи. Проблема остановки, проблема самоприменимости, проблема пустой ленты.
- •74. Требование результативности и теория алгоритмов.
- •75. Разрешимые и перечислимые множества. Связь между разрешимостью и перечислимостью множеств. Теорема Райса.
- •76. Сложность алгоритмов. Меры сложности алгоритмов. Сложность задачи. Массовые и индивидуальные задачи.
- •77. Асимптотическая сложность, порядок сложности. Сложность в среднем и в худшем случае.
- •78. Трудоемкость алгоритмов. Классификация алгоритмов по виду функции трудоёмкости
- •79. Методики перехода к временным оценкам трудоёмкости алгоритмов. Пооперационный анализ. Метод Гиббсона. Метод прямого определения среднего времени.
- •1) Пооперационный анализ
- •2) Метод Гиббсона
- •3) Метод прямого определения среднего времени
- •80. Сложность и кодирование. Сложность и архитектура машины.
- •81. Полиномиальный алгоритм. Легко- и трудноразрешимые задачи, классы задач p и np.
- •82. Полиномиальная сводимость и np-полнота. Np-полные задачи. Примеры np-полных задач. Теорема Кука. Примеры практически значимых np-полных задач.
72. Нормальные алгорифмы Маркова. Нормально вычислимые функции и принцип нормализации Маркова.
Нормальные алгорифмы Маркова это один из стандартных способов формального определения понятия алгоритма. Нормальный алгоритм описывает метод переписывания строк, похожий по способу задания на формальные грамматики. Нормальные алгоритмы являются вербальными, то есть предназначенными для применения к словам в различных алфавитах. Определение всякого нормального алгоритма состоит из двух частей: определения алфавита алгоритма (к словам из символов которого алгоритм будет применяться) и определения его схемы. Схемой нормального алгоритма называется конечный упорядоченный набор т. н. формул подстановки, каждая из которых может быть простой или заключительной. Простыми формулами подстановки называются слова вида , где L и D — два произвольных слова в алфавите алгоритма (называемые, соответственно, левой и правой частями формулы подстановки).
Нормальный алгоритм Маркова можно рассматривать как универсальную форму задания любого алгоритма. Универсальность нормальных алгоритмов декларируется принципом нормализации (тезис Маркова): для любого алгоритма в произвольном конечном алфавите А можно построить эквивалентный ему нормальный алгоритм над алфавитом А. Другими словами, всякий алгоритм нормализуем.
Функция f, заданная на некотором множестве слов алфавита А, называется нормально вычислимой, если найдется такое расширение B данного алфавита (А с_ В) и такой нормальный алгоритм в В, что каждое слово V (в алфавите А) из области определения функции f этот алгоритм перерабатывает в слово f(V).
73, 74
73. Вычислимость и разрешимость. Нумерация алгоритмов. Алгоритмически разрешимые и неразрешимые задачи. Проблема остановки, проблема самоприменимости, проблема пустой ленты.
Машина Тьюринга Т задает словарную функцию над некоторым алфавитом V и представляет собой описание машины — набор (F, Q, q0, #, I) - и правило функционирования, общее для всех машин, где
V — алфавит машины;
Q — конечное непустое множество символов, называемых состояниями машины (Q V = Æ);
q0 — выделенный элемент множества Q, называемый начальным состоянием;
# — специальный «пустой» символ, не принадлежащий ни V, ни Q;
I — программа машины.
Программа машины — это конечное множество слов вида qa q'a'd, называемых командами, где q, q' Q, a, a' V {#}; — вспомогательный символ-разделитель; d — элемент множества {l, r, р}, содержащего три специальных символа, которых нет ни в V, ни в Q. Предполагается также, что в программе I никакие две команды не могут иметь одинаковую пару первых двух символов.
По определению, функция F является вычислимой, если существует машина Тьюринга Т такая, что FT = F(где FT это частичная функция). Говорят также, что для функции F существует (частичный) алгоритм вычисления ее значений, задаваемый машиной Т.
Множество М называется разрешимым, если его характеристическая функция вычислима.
Пусть V – алфавит, М V – множество слов в V.
Характеристической функцией множества М называется предикат FM: V* {0, 1}, всюду определенный на V*: FM(а) = 1, если а принадлежит М, и FM(а) = 0, если а не принадлежит М.
Проблема остановки формулируется так. Пусть М – множество всех пар слов в алфавите V, в каждой паре первое слово – словарное представление некоторой машины Тьюринга, второе – такое слово, что эта машина останавливается, начав работу над ним. Является ли множество М неразрешимым.(ИЛИ:Даны описание алгоритма и его начальные входные данные, требуется определить, сможет ли выполнение алгоритма с этими данными завершиться когда-либо.) Самопримени́мость — свойство алгоритма успешно завершаться на данных, представляющих собой формальную запись этого же алгоритма.Задача распознавания самоприменимости является алгоритмически неразрешимой и сводится к тому, чтобы найти алгоритм, позволяющий за конечное число шагов по формальной записи некоего алгоритма узнать, является ли он самоприменимым или нет. Не существует алгоритма, который по любой МТ определял бы остановится эта машина стартуя с пустой ленты или нет.
Допустим, что есть алгоритм Р, решающий по любой М, остановится она или нет, стартуя с пустой ленты.Построим на его основании алгоритм, решающий по любому х, определено К(х,х) или нет.
Вход:
х
Пусть Мх – машина, которая, стартуя с пустой ленты, печатает
Построим
композицию машины Мх и
,
и обозначим
Для запускаем алгоритм Р и определяем, остановится она или нет, стартуя с пустой ленты. Ясно теперь, что К(х,х) определено <=> Р дает положительный ответ. Противоречие.