
- •Лекция 1. Информационные процессы в эвм Введение
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Лекция 2. Компьютер – общие сведения
- •Основные узлы пк – «Материнская плата»
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Лекция 4. Математическое обеспечение компьютеров
- •Программное обеспечение
- •Специальное
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы и case – технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Суперкомпьютеры
- •Разновидности высокопроизводительных систем и области их применения
- •Ограничения производительности вс
- •Закон Амдала и его следствия
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Микроархитектура процессора
- •512 Кбайт
- •Лекция 6 (с) Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Трансляторы
- •Режимы работы микропроцессорной системы
- •Классификация процессоров
- •Микроархитектура процессора Pentium II
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память
- •Классификация памяти
- •Распределение системной памяти
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •Алгоритм псевдо lru.
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Общее устройство нжмд
- •Пластины (диски)
- •Головка записи-чтения
- •Позиционер
- •Контроллер
- •Производительность
- •Структура хранения информации на жестком диске
- •Кластер
- •Магнитооптические диски
- •Лазерные компакт-диски cd - rom
- •Дисковые массивы и уровни raid
- •Raid 0: Базовая конфигурация.
- •Raid1: Зеркальные диски.
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства ввода-вывода
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Стандартные интерфейсы и шины систем ввода-вывода
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •Mpp архитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Локальная адресация. Понятие порта
Во второй лекции мы говорили, что каждый процесс, существующий в данный момент в вычислительной системе, уже имеет собственный уникальный номер – PID. Но этот номер неудобно использовать в качестве локального адреса процесса при организации удаленной связи. Номер, который получает процесс при рождении, определяется моментом его запуска, предысторией работы вычислительного комплекса и является в значительной степени случайным числом, изменяющимся от запуска к запуску. Представьте себе, что адресат, с которым вы часто переписываетесь, постоянно переезжает с место на место, меняя адреса, так что, посылая очередное письмо, вы не можете с уверенностью сказать, где он сейчас проживает, и поймете все неудобство использования идентификатора процесса в качестве его локального адреса. Все сказанное выше справедливо и для идентификаторов промежуточных объектов, использующихся при локальном взаимодействии процессов в схемах с непрямой адресацией.
Для локальной адресации процессов и промежуточных объектов при удаленной связи обычно организуется новое специальное адресное пространство, например представляющее собой ограниченный набор положительных целочисленных значений или множество символических имен, аналогичных полным именам файлов в файловых системах. Каждый процесс после рождения закрепляет за собой один или несколько адресов в этом адресном пространстве. Каждому промежуточному объекту при его создании присваивается свой адрес из этого адресного пространства. При этом удаленные пользователи могут заранее договориться о том, какие именно адреса будут зарезервированы для данного процесса, независимо от времени его старта, или для данного объекта, независимо от момента его создания. Подобные адреса получили название портов, по аналогии с портами ввода-вывода.
Необходимо отметить, что в системе может существовать несколько таких адресных пространств для различных способов связи. При получении данных от удаленного процесса операционная система смотрит, на какой порт и для какого способа связи они были отправлены, определяет процесс, который заявил этот порт в качестве своего адреса, или объект, которому присвоен данный адрес, и доставляет полученную информацию адресату. Виды адресного пространства портов (т. е. способы построения локальных адресов) определяются, как правило, протоколами транспортного уровня эталонной модели.
Полные адреса. Понятие сокета (socket)
Таким образом, полный адрес удаленного процесса или промежуточного объекта для конкретного способа связи с точки зрения операционных систем определяется парой адресов: <числовой адрес компьютера в сети, порт>. Подобная пара получила наименование socket (в переводе – «гнездо» или, как стали писать в последнее время, сокет), а сам способ их использования – организация связи с помощью сокетов. В случае непрямой адресации с использованием промежуточных объектов сами эти объекты также принято называть сокетами. Поскольку разные протоколы транспортного уровня требуют разных адресных пространств портов, то для каждой пары надо указывать, какой транспортный протокол она использует, – говорят о разных типах сокетов.
В современных сетевых системах числовой адрес обычно получает не сам вычислительный комплекс, а его сетевой адаптер, с помощью которого комплекс подключается к линии связи. При наличии нескольких сетевых адаптеров для разных линий связи один и тот же вычислительный комплекс может иметь несколько числовых адресов. В таких системах полные адреса удаленного адресата (процесса или промежуточного объекта) задаются парами <числовой адрес сетевого адаптера, порт> и требуют доставки информации через указанный сетевой адаптер.