
- •Лекция 1. Информационные процессы в эвм Введение
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Лекция 2. Компьютер – общие сведения
- •Основные узлы пк – «Материнская плата»
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Лекция 4. Математическое обеспечение компьютеров
- •Программное обеспечение
- •Специальное
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы и case – технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Суперкомпьютеры
- •Разновидности высокопроизводительных систем и области их применения
- •Ограничения производительности вс
- •Закон Амдала и его следствия
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Микроархитектура процессора
- •512 Кбайт
- •Лекция 6 (с) Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Трансляторы
- •Режимы работы микропроцессорной системы
- •Классификация процессоров
- •Микроархитектура процессора Pentium II
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память
- •Классификация памяти
- •Распределение системной памяти
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •Алгоритм псевдо lru.
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Общее устройство нжмд
- •Пластины (диски)
- •Головка записи-чтения
- •Позиционер
- •Контроллер
- •Производительность
- •Структура хранения информации на жестком диске
- •Кластер
- •Магнитооптические диски
- •Лазерные компакт-диски cd - rom
- •Дисковые массивы и уровни raid
- •Raid 0: Базовая конфигурация.
- •Raid1: Зеркальные диски.
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства ввода-вывода
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Стандартные интерфейсы и шины систем ввода-вывода
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •Mpp архитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Лекция 15 Многомашинные системы – вычислительные сети Введение
Известно, что наибольшая эффективность и производительность компьютерной системы достигается при организации распределенной модели обработки информации.
Основным признаком распределенной вычислительной системы является наличие нескольких центров обработки данных, очевидно к распределенным системам относятся многомашинные вычислительные комплексы, мультипроцессорные системы и компьютерные сети. Мультипроцессорная система (мультипроцессор) представляет собой несколько процессоров, которые разделяют общую физическую память и работают под управлением единой ОС. Взаимодействие между процессорами организуется через единое виртуальное адресное пространство.
Многомашинная система (мультикомпьютер) – это вычислительный комплекс (ВК), включающий в себя несколько компьютеров (каждый из которых работает под управлением собственной ОС), а также программные и аппаратные средства связи компьютеров, которые обеспечивают передачу данных в транспортной системе ВК. Связь между компьютерами многомашинной системы менее тесная, чем между процессорами в мультипроцессоре.
Компьютерные сети, также могут быть отнесены к распределенным вычислительным системам, в которых программные и аппаратные связи являются еще более слабыми, а автономность процессов проявляется в наибольшей степени. Каждый компьютер (узел сети) работает под управлением собственной ОС, взаимодействие между компьютерами осуществляется за счет передачи сообщений через сетевые адаптеры (сетевые карты) и каналы связи, содержащие наряду с линиями связи коммутационное оборудование. С их помощью один компьютер обычно запрашивает доступ к ресурсам (аппаратным и программным) другого компьютера. Разделение локальных ресурсов каждого узла между всеми пользователями сети реализуется посредством сетевых технологий и является основной целью создания вычислительной сети.
Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например: сетевых карт, драйверов, кабелей и разъемов, коммуникационного оборудования и т.д.) достаточный для построения вычислительной сети.
Простейшие виды связи сети передачи данных
Разработка вычислительной сети, как и всякой сети передачи данных призвана решать множество самых разных задач как на физическом уровне (кодирование, синхронизация сигналов, конфигурация связей …), так и на логическом уровне (адресация, коммутация, мультиплексирование, маршрутизация …). Попытаемся вначале сформулировать эти задачи, а потом и решать их вместе с разработчиками сетевых технологий. Начнем с самого простого случая, на первый взгляд не относящегося к сети, непосредственного соединения двух устройств физическим каналом «точка-точка» (point-to-point).
Связь компьютера с периферийным устройством
Частным случаем связи «точка-точка» является соединение компьютера и периферийного устройства. Для обмена данными компьютер и периферийное устройство оснащены внешними интерфейсами или портами.
Приложение
Адрес данных в ОП
Тип операции
Информация об устройстве
ОС
Драйвер
Команды
процессора
порт
ПУ
Контроллер ПУ Устройство управления
порт
порт
Команды
и данные
Интерфейс
Рис. 15.1 Связь компьютера с периферийным устройством
В данном случае к понятию интерфейс относятся:
разъем;
набор проводов;
совокупность правил обмена данными по этим проводам.
Со стороны компьютера логикой передачи сигналов на внешний интерфейс управляют:
контроллер ПУ – аппаратный блок, часто реализуемый в виде отдельной платы;
драйвер ПУ – программа, управляющая контроллером периферийного устройства.
Со стороны ПУ интерфейс чаще всего реализуется аппаратным устройством управления ПУ, хотя встречаются и аппаратно-программные устройства.
Обмен данными между ПУ и компьютером является двунаправленным, таким образом по каналу связи передается следующая информация:
данные с контроллера ПУ (например байты текста);
команды управления;
данные, возвращаемые устройством управления ПУ (например о готовности ПУ).
Рассмотрим последовательность действий, которые выполняются в том случае, когда некоторому приложению требуется напечатать текст на принтере. Со стороны компьютера в выполнении этой операции принимает участие, кроме уже названных контроллера, драйвера и приложения, еще один важнейший компонент — операционная система. Поскольку все операции ввода-вывода являются привилегированными, все приложения при выполнении операций с периферийными устройствами используют ОС как арбитра. Итак, последовательность действий такова:
1. Приложение обращается с запросом на выполнение операции печати к операционной системе. В запросе указываются: адрес данных в оперативной памяти, идентифицирующая информация принтера и операция, которую требуется выполнить.
2. Получив запрос, операционная система анализирует его, решает, может ли он быть выполнен, и если решение положительное, то запускает соответствующий драйвер, передавая ему в качестве параметров адрес выводимых данных. Дальнейшие действия, относящиеся к операции ввода-вывода, со стороны компьютера реализуются совместно драйвером и контроллером принтера.
Драйвер по заданному адресу скачивает данные из ОП в свой буфер и затем передает команды и данные контроллеру, который помещает их в свой внутренний буфер. Контроллер перемещает данные из внутреннего буфера во внешний порт.
Контроллер начинает последовательно передавать биты в линию связи, представляя каждый бит соответствующим электрическим сигналом. Чтобы сообщить устройству управления принтера о том, что начинается передача байта, перед передачей первого бита данных контроллер формирует стартовый сигнал специфической формы, а после передачи последнего информационного бита — столовый сигнал. Эти сигналы синхронизируют передачу байта. Кроме информационных бит, контроллер может передавать бит контроля четности для повышения достоверности обмена.
Устройство управления принтера, обнаружив на соответствующей линии стартовый бит, выполняет подготовительные действия и начинает принимать информационные биты, формируя из них байт в своем приемном буфере. Если передача сопровождается битом четности, то выполняется проверка корректности передачи: при правильно выполненной передаче в соответствующем регистре устройства управления принтера устанавливается признак завершения приема информации. Наконец, принятый байт обрабатывается принтером — выполняется соответствующая команда или печатается символ. Обязанности между драйвером и контроллером могут распределяться по-разному, но чаще всего контроллер поддерживает набор простых команд, служащих для управления периферийным устройством, а на драйвер обычно возлагаются наиболее сложные функции реализации обмена. Например, контроллер принтера может поддерживать такие элементарные команды, как "Печать символа", "Перевод строки", "Возврат каретки" и т. п. Драйвер же принтера с помощью этих команд реализует печать строк символов, разделение документа на страницы и другие более высокоуровневые операции. Драйвер, задавая ту или иную последовательность команд, определяет тем самым логику работы периферийного устройства.