
- •Лекция 1. Информационные процессы в эвм Введение
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Лекция 2. Компьютер – общие сведения
- •Основные узлы пк – «Материнская плата»
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Лекция 4. Математическое обеспечение компьютеров
- •Программное обеспечение
- •Специальное
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы и case – технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Суперкомпьютеры
- •Разновидности высокопроизводительных систем и области их применения
- •Ограничения производительности вс
- •Закон Амдала и его следствия
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Микроархитектура процессора
- •512 Кбайт
- •Лекция 6 (с) Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Трансляторы
- •Режимы работы микропроцессорной системы
- •Классификация процессоров
- •Микроархитектура процессора Pentium II
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память
- •Классификация памяти
- •Распределение системной памяти
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •Алгоритм псевдо lru.
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Общее устройство нжмд
- •Пластины (диски)
- •Головка записи-чтения
- •Позиционер
- •Контроллер
- •Производительность
- •Структура хранения информации на жестком диске
- •Кластер
- •Магнитооптические диски
- •Лазерные компакт-диски cd - rom
- •Дисковые массивы и уровни raid
- •Raid 0: Базовая конфигурация.
- •Raid1: Зеркальные диски.
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства ввода-вывода
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Стандартные интерфейсы и шины систем ввода-вывода
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •Mpp архитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Вычислительные Системы
Однопроцессорные
Многопроцессорные Многомашинные
SISD
SIMD
MISD
MIMD
CISC
RISC
Суперскаляр
Матричный
Векторный
МПВС
ММВС
Сильно связанные
Слабо связанные
Системы с массовым параллелизмом MSIMD
Рис. 12.1 Классификация ВС
Параллелизм вычислительных процессов
Принцип организации вычислительного процесса, сформулированный фон Нейманом, называется также "управление потоком команд", поскольку стержень процесса образуется последовательностью (потоком) команд, задаваемых программой. По фон Нейману, данные занимают подчиненное положение, последовательность и способ их обработки определяется командами программы, т.е. ход выполнения вычислительного процесса определяется только потоком команд.
Довольно длительное время принцип фон Неймана предполагал единственную, как тогда казалось, архитектуру компьютера: процессор по очереди выбирает команды программы, по очереди их декодирует и также по очереди обрабатывает данные. Все строго последовательно, просто и понятно. Однако очень скоро выяснилось, что компьютерные вычисления обладают естественным параллелизмом, т.е. большая или меньшая часть команд программы может выполняться одновременно и независимо друг от друга. Вся дальнейшая история вычислительной техники развивалась в соответствии с логикой расширения параллелизма программ и компьютеров, и каждый новый шаг на этом пути предварялся теоретическим анализом.
Известный специалист по архитектуре компьютеров М.Флин (M.Flynn) обратил внимание на то, что существует всего две причины, порождающие вычислительный параллелизм - независимость потоков команд, одновременно существующих в системе, и несвязанность данных, обрабатываемых в одном потоке команд. Если первая основа
параллелизма вычислительного процесса достаточно известна (это "обычное" мультипроцессирование) и не требует особых комментариев, то на параллелизме данных следует остановиться более подробно, поскольку в большинстве случаев он существует скрыто от программистов и используется ограниченным кругом профессионалов. Простейшим примером параллелизма данных является последовательность из двух команд:
A=B+C;
D=E*F;
Если строго следовать принципу фон Неймана, то вторая операция может быть запущена на исполнение только после завершения первой операции. Однако очевидно, что порядок выполнения этих команд не имеет никакого значения - операнды A, B и C первой команды никак не связаны с операндами D, E и F второй команды. Другими словами, обе операции являются параллельными именно потому, что операнды этих команд не связаны между собой. Можно привести множество примеров последовательности из трех и более команд с несвязанными данными, которые приведут к однозначному выводу: практически любая программа содержит группы операций над параллельными данными.
Итак - параллелизм верхнего уровня достигается за счет множества
независимых командных потоков и реализуется с помощью
многопроцессорной архитектуры;
- параллелизм нижнего уровня обязан своим существованием наличием
несвязанных потоков данных и реализуется за счет конвейерной
обработки различных фаз операций.