
- •Лекция 1. Информационные процессы в эвм Введение
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Лекция 2. Компьютер – общие сведения
- •Основные узлы пк – «Материнская плата»
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Лекция 4. Математическое обеспечение компьютеров
- •Программное обеспечение
- •Специальное
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы и case – технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Суперкомпьютеры
- •Разновидности высокопроизводительных систем и области их применения
- •Ограничения производительности вс
- •Закон Амдала и его следствия
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Микроархитектура процессора
- •512 Кбайт
- •Лекция 6 (с) Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Трансляторы
- •Режимы работы микропроцессорной системы
- •Классификация процессоров
- •Микроархитектура процессора Pentium II
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память
- •Классификация памяти
- •Распределение системной памяти
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •Алгоритм псевдо lru.
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Общее устройство нжмд
- •Пластины (диски)
- •Головка записи-чтения
- •Позиционер
- •Контроллер
- •Производительность
- •Структура хранения информации на жестком диске
- •Кластер
- •Магнитооптические диски
- •Лазерные компакт-диски cd - rom
- •Дисковые массивы и уровни raid
- •Raid 0: Базовая конфигурация.
- •Raid1: Зеркальные диски.
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства ввода-вывода
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Стандартные интерфейсы и шины систем ввода-вывода
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •Mpp архитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Общее устройство нжмд
Накопитель на жестких магнитных дисках состоит из пяти главных элементов, каждый из которых влияет на его характеристики: носителя (пакета дисковых пластин, вращающихся на одной оси), головок чтения записи, позиционера (механизма привода головок), двигателя привода дисков и контроллера, обеспечивающего согласованное управление всеми элементами диска и передачу данных между ним и компьютером. Данные хранятся на пластинах в виде концентрических дорожек, каждая из которых делится на секторы, содержащие данные и коды коррекции ошибок. Число секторов на дорожке в современных дисках варьируется в зависимости от длины дорожки, т. е. на внешних дорожках секторов больше, на внутренних — меньше (так называемый метод зонно-битовой записи, zoned bit recording). Совокупность дорожек, находящихся под головками в определенном их положении на всех пластинах диска, называется цилиндром.
Принципиально конструкция НЖМД соответствует рис. 10.1. Вся электромеханическая часть накопителя – пакет дисков со шпиндельным двигателем и блок головок с приводом находится в гермоблоке. На корпусе гермоблока помещается и плата электроники накопителя. В качестве привода шпинделя используют, как правило, трехфазные синхронные двигатели. В современных накопителях для точного управления шпиндельным двигателем используется механизм сервометок. Скорость вращения определяет скорость обмена, и у современных накопителях лежит в пределах от 7200 до 15000 об/мин.
Основная характеристика диска – плотность записи определяется линейной плотностью записи (количество бит на дорожке, треке) и количеством треков определяющих единичную площадь (дюйм квадратный).
Рис. 10.1 Общий вид НЖМД
Увеличение линейной плотности записи и плотности дорожек на поверхности дисковых пластин требует уменьшения размеров головок чтения-записи, что влечет за собой уменьшение снимаемых с головки сигналов до уровней, когда их очень сложно выделить из шумов. В этих условиях возрастает роль кодов коррекции ошибок (ECC) для надежного считывания записанных данных. Размеры этих кодов растут, и в результате 512 байт размер сектора оказывается неадекватным — недалеко время, когда количество байтов ECC превысит в таком секторе число байтов полезной информации. Согласно результатам ряда исследований, увеличение стандартного размера сектора до 4096 байт будет достаточным, чтобы обеспечить растущие потребности в ECC для ожидаемого в обозримом будущем роста плотности записи.
Пластины (диски)
Пластины — это диски из алюминиевого сплава или стеклообразного материала (стеклянные пластины получили в последнее время более широкое распространение), поверхность которых покрыта несколькими слоями магнитных и немагнитных материалов, защищенных сверху тонким слоем алмазоподобного графита. Размер и ориентация частиц магнитного слоя определяют вместе с размерами зазора магнитной головки возможную плотность записи. Заметим, что поверхностная плотность записи имеет две составляющие — продольную (определяется размером магнитных доменов, представляющих каждый бит одной дорожки) и поперечную (определяется расстоянием между соседними дорожками). Диаметр пластин большинства современных накопителей 95 мм (такие диски называют 3,5 дюйм) или 64 мм (2,5 дюйма). Существуют диски с диаметром пластин 1,8 (46 мм), 1 (25 мм) и даже 0,85 дюйма (22 мм). 2,5 дюйм диски чаще
всего используются в ноутбуках, хотя сейчас наметилась тенденция к применению 2,5 дюйм накопителей в серверах и рабочих станциях, так как уменьшение диаметра пластин
позволяет снизить время поиска. Чтобы избежать сверхпарамагнитного эффекта, применяется специальное многослойное покрытие с антиферромагнитной связью (AFC,
AntiFerromagnetically Coupled). Такое покрытие, неофициально называемое «пыльцой эльфов», состоит из двух магнитных слоев, «проложенных» тончайшим (толщина составляет всего три атомных диаметра!) слоем парамагнитного металла рутения. В этом «сэндвиче» вместо одиночных магнитных доменов образуются магнитные пары с противоположно направленными векторами намагниченности, обеспечивающие повышенную стойкость к размагничиванию. Кроме того, используются так называемые синтетические ферримагнетики (SFM). Пластины укреплены на шпинделе двигателя, который вращает их с весьма высокими угловыми скоростями (до 15 тыс. об/мин). С ростом поверхностной плотности записи и скоростей вращения оказалось, что традиционные двигатели с шариковыми подшипниками не удовлетворяют возросшим требованиям по боковым биениям пластин (они возникают из-за неидеально шарообразной формы шариков подшипника), шуму и вибрациям. Поэтому им на смену в большинстве современных накопителей пришли двигатели с гидродинамическими подшипниками (FDB, Fluid Dynamic Bearing), в которых вместо шариков используется специальное масло. Гидродинамические подшипники позволили также снизить уровень шума и повысить ударостойкость накопителей.