
- •Лекция 1. Информационные процессы в эвм Введение
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Лекция 2. Компьютер – общие сведения
- •Основные узлы пк – «Материнская плата»
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Лекция 4. Математическое обеспечение компьютеров
- •Программное обеспечение
- •Специальное
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы и case – технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Суперкомпьютеры
- •Разновидности высокопроизводительных систем и области их применения
- •Ограничения производительности вс
- •Закон Амдала и его следствия
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Микроархитектура процессора
- •512 Кбайт
- •Лекция 6 (с) Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Трансляторы
- •Режимы работы микропроцессорной системы
- •Классификация процессоров
- •Микроархитектура процессора Pentium II
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память
- •Классификация памяти
- •Распределение системной памяти
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •Алгоритм псевдо lru.
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Общее устройство нжмд
- •Пластины (диски)
- •Головка записи-чтения
- •Позиционер
- •Контроллер
- •Производительность
- •Структура хранения информации на жестком диске
- •Кластер
- •Магнитооптические диски
- •Лазерные компакт-диски cd - rom
- •Дисковые массивы и уровни raid
- •Raid 0: Базовая конфигурация.
- •Raid1: Зеркальные диски.
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства ввода-вывода
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Стандартные интерфейсы и шины систем ввода-вывода
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •Mpp архитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Тэг Строка Слово (байт)
Структура кэш-памяти для нашего случая будет иметь вид как на рисунке 7.6.
Адрес Блок Тэг Данные Адреса, которые использует
строки достоверности этот элемент
1
111
15, 31, 47,….
-
-
-
-
0 001 1, 17, 33,…
0000 0, 16, 32,…
Рис. 7.6 Кэш-память прямого отображения
Из рисунка видно, что в первую строку кэша можно помещать только первую, семнадцатую, тридцать третью и т.д. строки основной памяти.
Каждый элемент кэш-памяти состоит из четырех частей:
адрес строки кэша;
блок достоверности, управляющая информация (указывает есть ли достоверные данные в элементе или нет, и т.д.);
поле «Тег», указывает соответствующую строку памяти, из которой поступили данные;
поле «Данные» содержит копию данных основной памяти, поле данных вмещает одну строку в 16 байт.
Как мы видим, каждая запись включает в себя адрес, который этот элемент данных имеет в ОП, сами данные, дополнительную управляющую информацию (признак модификации, признак частотности обращения к данным за некоторый последний промежуток времени), которая используется для реализации алгоритма замещения данных в кэш-памяти.
Для каждой строки в кэш-памяти должен храниться один управляющий бит, называемый битом достоверности. При включении питания системы и при загрузке с диска в ОП все биты достоверности устанавливаются в ноль. Когда строка кэша в первый раз загружается из ОП, его бит достоверности устанавливается в 1. Если блок ОП обновляется из другого источника (например, из ЖД), минуя кэш, система проверяет, находится ли загружаемый блок в кэше. Если нет, его бит достоверности устанавливается в 0, чтобы в кэш-памяти не оказалось устаревших данных.
Итак, при каждом обращении к основной памяти по физическому адресу просматривается содержимое кэш-памяти с целью определения, не находятся ли там нужные данные. Зачастую, кэш-память не является адресуемой, поэтому поиск данных осуществляется по содержимому – по взятому из запроса значению поля «Тэг - адрес в ОП». Далее возможны два варианта:
если данные обнаруживаются в кэше, т.е. произошло кэш-попадание (cache-hit), они считываются из нее и результат передается источнику запроса;
если нужные данные отсутствуют в кэш-памяти, т.е. произошел кэш-промах (cache-miss), они считываются из основной памяти и одновременно копируются из ОП в кэш.
На практике в кэш-память считывается не один элемент данных, к которому произошло обращение, а целый блок данных, что увеличивает вероятность попадания в кэш. Покажем на примере эффективность применения кэш-памяти. Пусть имеется ОП со средним временем доступа t1=60,0 нс и кэш-память, имеющая время доступа к данным t2=12,0 нс, а p – вероятность кэш-попадания, причем p=0,8, тогда среднее время доступа к данным t в системе с кэш-памятью равно:
t = t1 (1-p) + t2p = 60,0*0,2 + 12,0*0,8 = 21,6 нс
Очевидно, что полученное среднее время доступа к такой системе больше чем среднее время доступа непосредственно к кэшу, но значительно меньше времени доступа к ОП. В реальных системах вероятность попадания в кэш близка к 0,9. Столь высокое значение hit rate связано с наличием у данных объективных свойств – локальность обращения, которое включает пространственную локальность (если произошло обращение по некоторому адресу, то с высокой степенью вероятности произойдет обращение к соседним адресам), временную локальность (если произошло обращение по некоторому адресу, то в ближайшее время будет обращение по этому же адресу). Однако, несмотря на свою простоту и высокое быстродействие кэш-память прямого доступа обладает большими недостатками, вытекающими из того факта, что различные строки основной памяти конкурируют за одну и ту же область кэш-памяти. Решение этих проблем достигается на пути конструирования различных видов иерархии кэш-памяти. Наличие или отсутствие кэш-памяти никак не влияет на построение программы. Эта память не является программно доступным объектом. Она скрыта от пользователя. Недаром эту память называют «cache - тайник».