
- •Лекция 1. Информационные процессы в эвм Введение
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Лекция 2. Компьютер – общие сведения
- •Основные узлы пк – «Материнская плата»
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Лекция 4. Математическое обеспечение компьютеров
- •Программное обеспечение
- •Специальное
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы и case – технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Суперкомпьютеры
- •Разновидности высокопроизводительных систем и области их применения
- •Ограничения производительности вс
- •Закон Амдала и его следствия
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Микроархитектура процессора
- •512 Кбайт
- •Лекция 6 (с) Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Трансляторы
- •Режимы работы микропроцессорной системы
- •Классификация процессоров
- •Микроархитектура процессора Pentium II
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память
- •Классификация памяти
- •Распределение системной памяти
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •Алгоритм псевдо lru.
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Общее устройство нжмд
- •Пластины (диски)
- •Головка записи-чтения
- •Позиционер
- •Контроллер
- •Производительность
- •Структура хранения информации на жестком диске
- •Кластер
- •Магнитооптические диски
- •Лазерные компакт-диски cd - rom
- •Дисковые массивы и уровни raid
- •Raid 0: Базовая конфигурация.
- •Raid1: Зеркальные диски.
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства ввода-вывода
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Стандартные интерфейсы и шины систем ввода-вывода
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •Mpp архитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
(Extended)
память для
организации виртуальной памяти разбита
на блоки по 1 Мбайт
Верхняя
(Upper Memory Area) Системное
ПЗУ BIOS Видеопамять
Основная,
базовая
память
(Conventional)
ОС
и программы пользователяРасширенная
Верхняя граница определяется
всем адресным пространством процессора
380 Кбайт для обслуживания системы
1 Мбайт
640 Кбайт
Рис. 7.2 Распределение адресного пространства памяти (Intel – совместимые)
Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
следующие 128 Кбайт отведены для программ BIOS адаптеров, которые записаны в микросхемах ПЗУ;
последние 128 Кбайт зарезервированы для системной программы BIOS.
Видеопамять
Видеоадаптер использует часть системной памяти для хранения графической или символьной информации, выводимой на монитор. На некоторых платах видеоадаптеров, например VGA, содержатся собственные BIOS, которые размещаются в области системной памяти.
Дополнительная (extended) память
Как мы уже говорили в современных процессорах объем оперативной памяти может существенно превышать предел 1Мбайт, например для систем на базе Pentium II максимальный объем ОП составляет 64 Гбайт. Для адресации памяти за пределами первого мегабайта процессор должен работать в защищенном режиме..
Расширенная (expanded) память
В некоторых программах может использоваться еще одна разновидность памяти – расширенная память (Expanded Memory Specification). В отличии от основной (в пределах первого мегабайта) и дополнительной памяти, расширенную память процессор адресовать не может. К ней можно обращаться только через небольшое окно размером 62 Кбайт, образуемое в области верхней памяти. EMS память используется только для хранения данных. Для оценки производительности основной памяти используются два основных параметра: задержка и полоса пропускания. Задержка памяти традиционно оценивается двумя параметрами: временем доступа (access time) и длительностью цикла (cycle time). Время доступа – промежуток времени между запросом на чтение и выдачей запрошенного слова из памяти. Длительность цикла – определяется минимальным временем между двумя последовательными обращениями к памяти.
Кэш-память (cache memory) – является буфером между ОЗУ и ее «клиентами» - процессором (или процессорами) и другими абонентами системной шины. Кэш хранит копии блоков данных тех областей ОЗУ, к которым происходили последние обращения, и весьма вероятно последующее обращение к тем же данным. Современные компьютеры имеют несколько уровней кэш-памяти.
Постоянная память (ПЗУ – постоянное запоминающее устройство) обычно содержит такую информацию, которая не должна меняться в ходе выполнения программы. Она имеет также название ROM (Read Only Memory) которое указывает на то, что обеспечиваются только режимы считывания и хранения. Постоянная память энергонезависима. Все микросхемы ПЗУ по способу занесения в них информации делятся на масочные, программируемые производителем – ROM, однократно программируемые пользователем - Programmable ROM, и многократно программируемые пользователем – Erasable Prom. Данный тип памяти используется для хранения программы начальной загрузки компьютера – BIOS.
Регистровая память процессора находится на кристалле процессора, тактируется его частотой и служит для организации сверхбыстродействующей памяти, работающей в формате команд регистр-регистр.
Полупостоянная память в основном используется для хранения информации о конфигурации компьютера. Традиционная память конфигурации вместе с часами и календарем (CMOS Memory) имеет объем порядка нескольких килобайт. Сохранность данных обеспечивается аккумулятором или батарейкой.
Внешняя электронная память реализована, как правило, на флэш-картах с различными интерфейсами и конструктивами.