
- •Лекция 1. Информационные процессы в эвм Введение
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Кодирование информации
- •Представление данных в эвм.
- •Форматы файлов
- •Кодирование чисел
- •Кодирование текста
- •Кодирование графической информации
- •Кодирование звука
- •Типы данных
- •Лекция 2. Компьютер – общие сведения
- •Основные узлы пк – «Материнская плата»
- •Интерфейсные шины
- •Основные внешние устройства компьютера
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Вопросы и задания
- •Лекция 4. Математическое обеспечение компьютеров
- •Программное обеспечение
- •Специальное
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы и case – технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Суперкомпьютеры
- •Разновидности высокопроизводительных систем и области их применения
- •Ограничения производительности вс
- •Закон Амдала и его следствия
- •Микропроцессорная система
- •Что такое микропроцессор?
- •Микроархитектура процессора
- •512 Кбайт
- •Лекция 6 (с) Устройство управления
- •Микропроцессорная память
- •Структура адресной памяти процессора
- •Интерфейсная часть мп
- •Трансляторы
- •Режимы работы микропроцессорной системы
- •Классификация процессоров
- •Микроархитектура процессора Pentium II
- •512 Кбайт
- •Вопросы и задания
- •Лекция 7. Структурная организация эвм - память
- •Классификация памяти
- •Распределение системной памяти
- •Расширенная
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений;
- •Видеопамять
- •Оперативная память, типы оп
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •Алгоритм псевдо lru.
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Общее устройство нжмд
- •Пластины (диски)
- •Головка записи-чтения
- •Позиционер
- •Контроллер
- •Производительность
- •Структура хранения информации на жестком диске
- •Кластер
- •Магнитооптические диски
- •Лазерные компакт-диски cd - rom
- •Дисковые массивы и уровни raid
- •Raid 0: Базовая конфигурация.
- •Raid1: Зеркальные диски.
- •Вопросы и задания
- •Лекция 11. Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства ввода-вывода
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Стандартные интерфейсы и шины систем ввода-вывода
- •Вопросы и задания
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •Mpp архитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 14. Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Availability и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Список литературы:
Диалоговые ос и субд
70-е годы — время безраздельного господства унифицированных машин из клона IBM 360/370. Компьютеры по-прежнему были безумно дороги, но их мощность и надежность резко возросли. Начали создаваться крупные информационные системы для промышленных и торговых предприятий, банков, социальных учреждений. Пользователи перестали бегать с колодами перфокарт — на их рабочих местах появились дисплеи, подключенные к центральной ЭВМ, расположенной в вычислительном центре фирмы. Для организации вычислительного процесса в этих условиях понадобились операционные системы нового типа, позволяющие организовать диалог большого числа пользователей в режиме разделения времени. Родина таких систем — Массачусетский технологический институт (МТИ), где, начиная с середины 60-х годов, проводились экспериментальные работы, но крупные промышленные диалоговые ОС разрабатывались фирмами — производителями аппаратуры. Создание крупных информационных систем поставило перед разработчиками общего ПО проблему хранения больших массивов данных и организации их обработки множеством независимых программ. Так возникла концепция систем управления базами данных (СУБД). Разработка эффективных СУБД оказалась задачей не мене трудоемкой, чем проектирование ОС, первая промышленная СУБД IMS для IBM 360/370 была создана корпорацией IBM в 19691970 годах в рамках проекта полета человека на Луну «Аполлон» и потребовала очень больших капиталовложений.
Использование СУБД произвело настоящую революцию в индустрии обработки данных.
Системы управления базами данных (СУБД), появившиеся в середине 60-х годов, имеют ряд преимуществ по сравнению с прежней схемой независимой работы программ с данными:
• однократный ввод данных,
• независимость программ от данных,
• сокращение затрат на программирование.
Основные функции СУБД:
• описание логической структуры данных,
• манипулирование данными,
• обеспечение целостности данных,
• обеспечение многопользовательского доступа,
• защита данных.
Существуют три основных типа СУБД, различающиеся логической организацией данных: иерархические, сетевые и реляционные. Первыми были иерархические СУБД (первая промышленная СУБД IMS была разработана фирмой IBM в 1968 году), затем в результате теоретических исследований, предпринятых рабочей группой КОДАСИЛ, появилась сетевая модель данных. Наиболее совершенными и распространенными в настоящее время являются реляционные СУБД, основанные на табличной (реляционной) модели данных, предложенной в 1970 году сотрудником IBM Эдгаром Коддом. Стандартным языком запросов в такой СУБД является язык SQL, разработанный в 1974 году Чемберленом и Бойсом.
Современные промышленные СУБД являются очень дорогими и долгоживущими программными продуктами, соизмеримыми по сложности с операционными системами. К концу века на рынке лидирует «большая шестерка»: Oracle, DB2, Informix, Sybase, Ingres, MS SQL Server.
Прикладные программы и case – технологии
В конце 70-х наступил золотой век софтверного бизнеса, возникли тысячи фирм, выбросивших на рынок необъятное море пакетов прикладных программ для деловых применений и развлечений. Они в корне отличались от «тяжелого» софта 70-х годов — были простыми, дешевыми, играли на экранах всеми цветами радуги, упаковывались в яркие коробки и продавались в магазинах как книги или грампластинки. На невероятно расширившемся рынке программного обеспечения возникла ожесточенная конкуренция. Как это бывает с товарами ширпотреба, коммерческий успех того или иного продукта часто обуславливается не техническими параметрами, а широкой рекламой, продуманной маркетинговой политикой. Показательна в этом отношении судьба фирмы Microsoft ее активная, даже агрессивная маркетинговая стратегия привела к тому, что продукция Microsoft стала фактическим стандартом на рынке офисного ПО, а операционная система Windows сумела победить более прогрессивную по своим идеям систему OS/2 фирмы IBM.
Повальное увлечение домашними компьютерами и потребительским софтом как-то отодвинуло в тень работы по совершенствованию серьезного общего программного обеспечения. По-видимому, самым большим успехом в этом направлении в 80-е годы можно считать разработку CASE-технологий, то есть технологий автоматизированного проектирования программного обеспечения (CASE — Computer Aided Software Design). Их необходимость возникла при создании информационных систем для крупных организаций, объединяющих сотни пользователей и оперирующих с тысячами объектов и экранных форм. Даже применение языков высокого уровня таких как Cobol, Pascal или C и средств СУБД не избавляет программиста от рутинной работы по проектированию связанных информационных таблиц и организации диалога. Автоматизированные технологии позволяют отказаться от большинства механической работы. На специальных языках сверхвысокого уровня, символьных или графических (они часто называются языками четвертого поколения 4GL — 4th Genrration Language), описывается содержательная постановка задачи, а система сама, пользуясь встроенными в нее стандартными правилами проектирования, генерирует код на обычном языке программирования. Программисту остается подправить текст, если он его почему-то не устраивает, пропустить через компилятор и получить готовую программу.