Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OEVM-sem-pract-2007.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.97 Mб
Скачать

Перевод чисел из одной системы счисления в другую, когда одно основание является целой степенью другого.

Как мы уже знаем, в ЭВМ наибольшее применение находит система с основаниями 2, 4, 8, 16, т.е. системы которые кратны степени 2. Поэтому целесообразно рассмотреть лишь правила перевода чисел в этих системах. Аналогичные правила будут справедливы и для других систем. Допустим, что имеется некоторое целое число N8 в 8-ой системе. Оно может быть представлено в виде:

N8 = a1*8n-1 + a2*8n-2 + a3*8n-3 + ...

+ an-2*82 + an-1*81 + an*80.

Пусть каким-либо образом мы получили запись этого числа в виде двоичного, т.е.:

N2 = b1*2k-1 + b2*2k-2 + ...

+ bk-2*22 + bk-1*21 + bk*20.

Разделим эти выражения на 23 = 8:

a1*8n-2 + a2*8n-3 + a3*8n-4 + ... + an-1*80 + an*8-1

-------

дробная часть

b1*2k-4 + b2*2k-5 + ... + bk-3*20 + bk-2*2-1 + bk-1*2-2 + bk*2-3

-------------------------

дробная часть

Так как числа были равны, то получается одинаковые частные и одинаковые остатки:

an*8-1 = bk-2*2-1 + bk-1*2-2 + bk*2-3.

Если снова разделим целые части на 23 = 8, то опять получим равные частные и равные остатки.

При этом видим, что каждой восьмеричной цифре соответствует её двоичный эквивалент. Поэтому перевод выполняется простой заменой цифры восьмеричной системы её двоичным эквивалентом и обратно.

Пример:

62,7538 = 110010,1111010112

Аналогично для 4-ой системы:

321,22334 = 111001,101011112

Аналогично для 16-ой системы:

1D876,72 = 00011101100001110110,011100102

Из этих примеров видим, что чем выше основание системы счисления, тем компактнее запись.

bk-2

bk-1

bk

an

0

0

0

0

0

0

1

1

0

1

0

2

0

1

1

3

1

0

0

4

1

0

1

5

1

1

0

6

1

1

1

7

Если умножить последние соотношения на 8, то:

an*8-1*8 = (bk-2*2-1 + bk-1*2-2 + bk*2-3)*23

an = bk-2*22 + bk-1*21 + bk*20

Практически перевод двоичного числа в восьмеричное, шестнадцатеричное и обратно очень прост. Покажем это на примере:

3 5 0 6 тетрады 350616

0 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0

3 2 4 0 6 триады 324068

Все позиционные системы одинаковы, в том смысле, что арифметические действия выполняются по одним и тем же правилам.

Пример 2.

1 6-теричное 4 D 1 3 A 5 E

2 -ичное 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0

8-ричное 4 6 4 2 3 5 1 3 2

Пример 3

(11010011)2 = Х10

(17)10 2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]