Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы.doc
Скачиваний:
85
Добавлен:
20.05.2014
Размер:
1.16 Mб
Скачать

26. Топология физических связей компьютеров в сети.

Известно, что наибольшая эффективность и производительность компьютерной системы достигается при организации распределенной модели обработки информации.

Основным признаком распределенной вычислительной системы является наличие нескольких центров обработки данных, очевидно к распределенным системам относятся многомашинные вычислительные комплексы, мультипроцессорные системы и компьютерные сети. Мультипроцессорная система(мультипроцессор) представляет собой несколько процессоров, которые разделяют общую физическую память и работают под управлением единой ОС. Взаимодействие между процессорами организуется через единое виртуальное адресное пространство.

Многомашинная система(мультикомпьютер) – это вычислительный комплекс (ВК), включающий в себя несколько компьютеров (каждый из которых работает под управлением собственной ОС), а также программные и аппаратные средства связи компьютеров, которые обеспечивают передачу данных в транспортной системе ВК. Связь между компьютерами многомашинной системы менее тесная, чем между процессорами в мультипроцессоре.

Компьютерные сети, также могут быть отнесены к распределенным вычислительным системам, в которых программные и аппаратные связи являются еще более слабыми, а автономность процессов проявляется в наибольшей степени. Каждый компьютер (узел сети) работает под управлением собственной ОС, взаимодействие между компьютерами осуществляется за счет передачи сообщений через сетевые адаптеры (сетевые карты) и каналы связи, содержащие наряду с линиями связи коммутационное оборудование. С их помощью один компьютер обычно запрашивает доступ к ресурсам (аппаратным и программным) другого компьютера. Разделение локальных ресурсов каждого узла между всеми пользователями сети реализуется посредством сетевых технологий и является основной целью создания вычислительной сети.

Сетевая технология– это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например: сетевых карт, драйверов, кабелей и разъемов, коммуникационного оборудования и т.д.) достаточный для построения вычислительной сети.

Простейшие виды связи сети передачи данных

Разработка вычислительной сети, как и всякой сети передачи данных призвана решать множество самых разных задач как на физическом уровне (кодирование, синхронизация сигналов, конфигурация связей …), так и на логическом уровне (адресация, коммутация, мультиплексирование, маршрутизация …). Попытаемся вначале сформулировать эти задачи, а потом и решать их вместе с разработчиками сетевых технологий. Начнем с самого простого случая, на первый взгляд не относящегося к сети, непосредственного соединения двух устройств физическим каналом «точка-точка» (point-to-point).

27. АрхитектураNuma.

Сегодня стало уже общепринятым, что в многопроцессорных системах с общим полем памяти для достижения наилучшего масштабирования необходимо отказаться от классической архитектуры SMP (узким местом которой является общая шина или коммутатор) в пользу ccNUMA. В последнем случае многопроцессорные системы строятся на базе SMP-узлов, содержащих процессоры и оперативную память, а узлы связываются между собой посредством общесистемного межсоединения, в роли которого обычно выступает коммутатор. Поэтому доступ процессоров к локальной оперативной памяти своего узла осуществляется быстрее, чем к оперативной памяти другого узла; таким образом, доступ оказывается «неоднородным», о чем и говорит сокращение NUMA (Non-Unifrom Memory Access), а сс означает coherent cash («когерентный кэш»). Замедление доступа к удаленной оперативной памяти — это плата за масштабируемость, и разработчики стремятся по возможности нивелировать различия в скорости доступа к локальной и удаленной памяти.

Главная особенность такой архитектуры - неоднородный доступ к памяти.  Гибридная архитектура воплощает в себе удобства систем с общей памятью и относительную дешевизну систем с раздельной памятью. Суть этой архитектуры - в особой организации памяти, а именно: память является физически распределенной по различным частям системы, но логически разделяемой, так что пользователь видит единое адресное пространство. Система состоит из однородных базовых модулей (плат), состоящих из небольшого числа процессоров и блока памяти. Модули объединены с помощью высокоскоростного коммутатора. Поддерживается единое адресное пространство, аппаратно поддерживается доступ к удаленной памяти, т.е. к памяти других модулей. При этом доступ к локальной памяти осуществляется в несколько раз быстрее, чем к удаленной. По существу архитектура NUMA является MPP (массивно-параллельная архитектура) архитектурой, где в качестве отдельных вычислительных элементов берутся SMP (cимметричная многопроцессорная архитектура) узлы. 

Структурная схема компьютера с гибридной сетью: четыре процессора связываются между собой при помощи кроссбара в рамках одного SMP узла. Узлы связаны сетью типа "бабочка" (Butterfly): 

Впервые идею гибридной архитектуры предложил Стив Воллох и воплотил в системах серии Exemplar. Вариант Воллоха - система, состоящая из 8-ми SMP узлов. Фирма HP купила идею и реализовала на суперкомпьютерах серии SPP. Идею подхватил Сеймур Крей (Seymour R.Cray) и добавил новый элемент - когерентный кэш, создав так называемую архитектуру cc-NUMA(Cache Coherent Non-Uniform Memory Access), которая расшифровывается как "неоднородный доступ к памяти с обеспечением когерентности кэшей". Он ее реализовал на системах типа Origin.