Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
02 Лц Классиф сам.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
1.63 Mб
Скачать

41

Министерство образования и науки Украины

Национальный авиационный университет

Аэрокосмический институт

Кафедра конструкции летательных аппаратов

ЛЕКЦИЯ № 2 (3)

По дисциплине "Конструкция и прочность летательных аппаратов"

2. Конструкция самолетов гражданской авиации и их классификация

Составитель профессор А.И. Радченко

Киев 2009

2.1. Основные агрегаты самолета

Самолеты относятся к летательным аппаратам тяжелее воздуха, им характерен аэродинамический принцип полета. У само­летов подъемная сила Y создается за счет энергии воздушного по­тока, омывающего несущею поверхность, которая неподвижно закреплена от­носительно корпуса, а поступательное движение в заданном направ­лении обеспечивается тягой силовой установки (СУ) самолета.

Различные типы самолётов имеют одни и те же основные агрегаты (составные части): крыло, вертикальное (ВО) и горизонтальное (ГО) оперение, фюзеляж, силовую установку (СУ) и шасси (рис 2.1).

Рис. 2.1. Основные элементы конструкции самолета

Крыло самолета 1 создает подъемную силу и обеспечивает попе­речную устойчивость самолету при его полете.

часто крыло является силовой базой для размещения шасси, двигателей, а его внутренние объемы используют для размещения топлива, оборудования, различных узлов и агрегатов функциональных систем.

Для улучшения взлетно-посадочных характеристик (ВПХ) современных самолетов на крыле устанавливаются средства механизации по передней и задней кромкам. По передней кромке крыла размещают предкрылки, а по задней - закрылки 10, интерцепторы 12 и элероны-интерцепторы.

В силовом отношении крыло представляет собой балку сложной конструкции, опорами которой являются силовые шпангоуты фюзеляжа.

Элероны 11 являются органами поперечного управления. Они обеспечивают поперечную управляемость самолета.

В зависимости от схемы и скорости полета, геометрических па­раметров, конструкционных материалов и конструктивно-силовой схемы масса крыла может составлять до 9…14 % от взлетной массы само­лета.

Фюзеляж 13 объединяет основные аг­регаты самолета в единое целое, т.е. обеспечивает замыкание сило­вой схемы самолета.

Внутренний объем фюзеляжа служит для размеще­ния экипажа, пассажиров, грузов, оборудования, почты, багажа, средств спасения людей на случай возникновения аварийных ситуа­ций. В фюзеляжах грузовых самолетов предусмотрены развитые погрузочно-разгрузочные системы, устройства быстрой и надежной швар­товки грузов.

Функцию фюзеляжа у гидросамолётов выполняет лодка, которая позволяет производить взлет и посадку на воду.

фюзеляж в силовом отношении является тонкостенной балкой, опорами которой являются лонжероны крыла, с которыми он связан через узлы силовых шпангоутов.

масса констру­кции фюзеляжа составляет 9…15 % от взлетной массы самолета.

Вертикальное оперение 5 состоит из неподвижной части киля 4 и руля направления (РН) 7.

Киль 4 обеспечивает самолету путевую устойчивость в плоскости X0Z, а РН - путевую управляемость относительно оси 0y.

Триммер РН 6 обеспечивает снятие длительных нагрузок с педалей, например, при отказе двигателя.

Горизонтальное оперение 9 включает в себя неподвижную или ограниченно подвижную часть (стабилизатор 2) и подвижную часть – руль высоты (РВ) 3.

Стабилизатор 2 придает самолету продольную устойчивость, а РВ 3 - продольную управляемость. РВ может нести на себе трим­мер 8 для разгрузки штурвальной колонки.

Масса, конструкции ГО и ВО обычно не превышает 1,3…3 % от взлетной массы самолета.

Шасси самолета 16 относится к взлетно-посадочным устройствам (ВПУ), которые обеспечивают разбег, взлет, посадку, пробег и маневрирование само­лета при движении по земле.

Число опор и расположение их относительно центра масс (ЦМ) самолета за­висит от схем шасси и особенностей эксплуатации самолета.

Шасси самолета, показанного на рис.2.1, имеет две основные опоры 16 и одну носовую опору 17. Каждая опора включает в себя силовую стой­ку 18 и опорные элементы - колеса 15. Каждая опора может иметь несколько стоек и несколько колес.

Чаще всего шасси самолета дела­ют убирающимися в полете, поэтому для его размещения предусматри­вают специальные отсеки в фюзеляже 13. Возможна уборка и размещение основных опор шасси в специальных гондолах (или мотогондолах), обтекателях 14.

Ш асси обеспечивает поглощение кинетической энергии удара при посадке и энергии торможения на пробеге, рулении и при маневрировании самолета по аэродрому.

самоле­ты-амфибии могут совершать взлет и посадку, как с наземных аэродромов, так и с водной поверхности.

Рис.2.2. Шасси самолета-амфибии.

на корпусе гидросамолета устанавливают колесно­е шасси, а под крылом размещают поплавки 1,2 (рис.2.2).

Относительная масса шасси обычно составляет 4…6% от взлетной массы самолета.

Силовая установка 19 (см.рис.2.1), обеспечивает создание силы тяги самолета. Она состоит из двигателей, а также сис­тем и устройств, обеспечивающих их работу в условиях летной и наземной эксплуатации самолета.

У поршневых двигателей сила тяги создается воздушным винтом, у турбовинтовых - воздушным винтом и частично реакцией газов, у реактивных - реакцией газов.

В СУ входят: узлы крепления двигателей, гондола, управление СУ, входные и выходные устройства двигателей, топливная и масляная системы, системы запуска двигателя, противопожарная и противообледенительная системы.

Относительная масса СУ в зависимости от типа двигателей и схе­мы размещения их на самолете может достигать 14…18 % от взлетной мас­сы самолета.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]