
- •Глава III Электрический ток в различных средах
- •7. Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи
- •7.1. Основные характеристики электрического тока
- •7.2. Закон Ома для участка цепи
- •Опыт по закону Ома для участка цепи
- •7.3. Сторонние силы. Закон Ома для полной цепи
- •8. Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме
- •8.1. Сопротивление проводников
- •8.2. Сверхпроводимость
- •8.3. Электронная теория проводимости металлов
- •8.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа
- •9.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •Опыт по закону Джоуля – Ленца
- •9.2. Разветвление цепи
- •9.3. Правила Кирхгофа
- •10. Понятие о зоной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение
- •10.1. Понятие о зонной теории проводимости
- •10.2. Контактная разность потенциалов.
- •10.3. Термоэлектрические явления и их применение
- •11. Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза
- •11.1. Электролитическая диссоциация
- •11.2. Проводимость электролитов
- •11.3. Законы Фарадея для электролиза.
- •Определение заряда иона.
- •Техническое применение электролиза
- •12. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •12.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •12.2. Виды разрядов. Применение газовых разрядов
- •Прохождение электрического тока через воздух при постепенном его разрежении
- •Электроискровая обработка металлов.
- •13. Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение
- •13.1. Понятие о плазме
- •13.2. Термоэлектронная эмиссия
- •13.3. Электронные лампы и их применение
- •14. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы
- •14.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •14.2. Полупроводниковые диоды и транзисторы
14.2. Полупроводниковые диоды и транзисторы
Основным элементом большинства полупроводниковых элементов является p-n переход.
р-n переходом называется область на границе полупроводников р и n типов.
Условно р-n переход можно показать следующим образом:
Рис. 14.10.
Знак проводимости соответствует знаку источника, тогда дырки переместятся влево, электроны вправо. Через р-n переход пойдет электрический ток, состоящий из электронов и дырок.
Рис. 14.11.
Знак проводимости противоположен знаку источника, тогда носители заряда движутся к полюсам, не переходя границу контакта полупроводников, ток через р-n переход не возникает, следовательно, р-n переход обладает односторонней проводимостью.
р-n переход используется в полупроводниковых диодах.
Рис. 14.12.
Транзистор – полупроводниковый прибор, который состоит из двух р-n переходов, включенных встречно. Эмиттер – область транзистора, откуда берутся носители заряда. Коллектор — область, куда стекаются носители заряда. База выполняет роль управляющей сетки в лампе.
Рис. 14.13.
Транзисторы служат для усиления электрических сигналов, потому что небольшое изменение напряжения между эмиттером и базой приводит к значительному изменению напряжения на нагрузке, включенной в цепи коллектора.
Опыт 14.3 Усилитель постоянного тока на транзисторе
Оборудование:
1. Транзистор на подставке;
2. Фотодиод на подставке;
3. Источник тока В-24;
4. Соединительные провода;
5. Электрическая лампочка;
6. Два демонстрационных гальванометра;
Схема установки:
Рис. 14.4.
При затемнении фотоэлемента ток небольшой. Если же осветить фотоэлемент, то ток возрастает на участке G2.