Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-6 mat.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
44.23 Кб
Скачать
  1. Геометрическая вероятность. Свойства вероятности

(Ω- это достоверное событие, или пространство элементарных обытий)

При геометрическом подходе к определению вероятности в качестве пространства Ω элементарных событий рассматривается произвольное множество конечной лебеговой меры на прямой, плоскости или пространстве. Событиями называются всевозможные измеримые подмножества множества Ω .

Вероятность события А определяется формулой

где   обозначает лебегову меру множества А. При таком определении событий и вероятностей все аксиомы А.Н.Колмогорова выполняются.

В конкретных задачах, которые сводятся к указанной выше вероятностной схеме, испытание интерпретируется как случайный выбор точки в некоторой области Ω  , а событие А – как попадание выбранной точки в некоторую подобласть А области Ω . При этом требуется, чтобы все точки области Ω имели одинаковую возможность быть выбранными. Это требование обычно выражается словами «наудачу», «случайным образом» и т.д.

  1. Элементы комбинаторики.

Если из множества, содержащего m элементов, требуется выбрать какие-то k элементов, то возникает вопрос: сколькими способами это можно сделать и какие подмножества при этом получаются. Такие задачи называются комбинаторными, а соответствующий раздел математики – комбинаторикой.

Все формулы для подсчета числа решений в комбинаторных задачах опираются на правило произведения: если элемент X можно выбрать kспособами, а элемент Y можно выбрать n способами, то пару XY можно составить kn способами.

Размещение с повторением. Из множества, содержащего m элементов, нужно выбрать k элементов, причем выбранный элемент, после того, как его взяли, вновь возвращается в исходное множество (то есть элементы в выбранном множестве могут повторяться). Пользуясь правилом произведения, получим, что каждый из k элементов может быть выбран m способами. Таким образом, общее число комбинаций равно  .

Р азмещение без повторений. Из множества, содержащего m различных элементов, надо выбрать упорядоченное подмножество из kэлементов (k£m), то есть такое подмножество, в котором элементы располагаются в определенном порядке, и изменение порядка элементов изменяет подмножество. Кроме этого, элементы в выбранном подмножестве не повторяются. Требуется выяснить, сколько таких комбинаций существует. По правилу произведения получаем, что первый элемент можно выбрать m способами, второй элемент – (m-1) способом, и так далее, а элемент с номером k можно выбрать (m – k + 1) способами. Следовательно, число упорядоченных k-элементных подмножеств, взятых из множества, содержащего m элементов равно m(m-1)(m-2)…(m-k+1). Такие подмножества называются размещениями из m элементов по k элементов, а их общее число можно выразить формулой.

П ерестановки. Пусть множество содержит m различных элементов. Рассмотрим все возможные варианты перестановок элементов этого множества. Получаемые при этом упорядоченные множества отличаются друг от друга только порядком входящих в них элементов. Такие упорядоченные множества называются перестановками. Число перестановок из m элементов равно: 

С очетания. Пусть из множества, содержащего m различных элементов, требуется выбрать подмножество, содержащее k различных элементов (k  m). Получаемые при этом подмножества не упорядочены. Такие неупорядоченные подмножества называются сочетаниями. Число сочетаний изm элементов по k элементов вычисляется по формуле: 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]