
- •Содержание
- •1. Геоинформационные системы
- •1.1. Понятие о географических информационных системах
- •1.2. Развитие и определение гис
- •1.3. Аппаратные средства геоинформатики
- •1.3.1. Основные технические средства
- •1.3.2. Внешние запоминающие устройства
- •1.4. Классификация гис по назначению
- •1.5. Классификация гис по архитектуре
- •2. Организация информации в гис
- •2.1. Модели пространственных данных
- •2.2. Понятие объекта
- •2.3. Понятие слоя
- •2.4. Системы координат в гис
- •2.4.1. Общие сведения о модели фигуры Земли
- •2.4.2. Геодезическая система координат
- •2.4.3. Системы координат
- •2.4.4. Картографические проекции
- •2.4.5. Система координат, принятая в Роскартографии
- •2.5. Ввод графической информации в гис
- •2.5.1. Растровый и векторный форматы
- •2.5.2. Стандартные форматы
- •2.6. Тематическая информация в гис
- •2.6.1. Возникновение баз данных
- •2.6.2. Системы управления базами данных
- •2.6.3. Субд, применяемые в гис
- •3. Технологическая схема обработки данных в гис
- •4. Источники данных гис
- •4.1. Источники пространственных данных
- •4.2. Цифровые карты
- •4.2.1. Цифровое картографирование, определение цифровых карт
- •4.2.2. Классификация цифровых карт
- •4.2.3. Требования к электронным топографическим картам
- •4.3. Материалы дистанционного зондирования
- •4.4. Особенности программного обеспечения для обработки данных дистанционного зондирования Земли
- •4.5. Программное обеспечение для обработки данных дистанционного зондирования. Поставщики программного обеспечения
- •5. Полнофункциональные гис
- •5.1. Общие сведения
- •5.2. Программы ввода информации с традиционных носителей
- •6. Проект «панорама»
- •6.1. Общие сведения
- •6.1.1. Векторизатор «Панорама – Редактор»
- •6.1.2. Кадастровая система «Земля и право»
- •6.1.3. Средства разработки приложений Gis ToolKit
- •6.2. Гис «Карта 2005»
- •6.2.1. Общие сведения
- •6.2.2. Требования к программным и аппаратным средствам
- •6.2.3. Структура программного обеспечения
- •6.2.4. Виды обрабатываемых данных
- •6.2.4.1. Электронная карта в системе «Карта 2005»
- •6.2.4.2. Структура векторных карт
- •6.2.4.2.1. Лист векторной карты
- •6.2.4.2.2. Номенклатура листа
- •6.2.4.2.3. Район работ
- •6.2.4.2.4. Структура пользовательских векторных карт
- •6.2.4.2.5. Групповые объекты
- •6.2.4.2.6. Графические объекты карты
- •6.2.4.3. Структура растровых карт
- •6.2.4.4. Структура матричных данных о местности
- •6.2.4.5. Структура tin-моделей рельефа местности
- •6.2.4.6. Проект электронной карты
- •6.2.5. Создание и применение границ видимости
- •7. Технология создания электронных карт средствами проекта «панорама»
- •7.1. Назначение технологии
- •7.2. Технические средства обеспечения технологии
- •7.3. Состав и качество исходных материалов
- •7.4. Описание технологической схемы
- •7.4.1. Редакционно-подготовительные работы и входной контроль исходных картографических материалов
- •7.4.2. Создание математической и геодезической основы
- •7.4.3. Преобразование исходной картографической информации в растровую форму
- •7.4.3.1. Сканирование исходных материалов
- •7.4.3.2. Контроль качества растрового представления
- •7.4.3.3. Трансформирование растрового изображения
- •7.4.3.4. Контроль точности растрового представления
- •7.4.4. Векторизация объектов по растровому изображению и предварительная обработка данных
- •7.4.5. Правила цифрового описания картографической информации
- •7.4.5.1. Общие правила метрического описания картографической информации электронных карт
- •7.4.5.2. Общие правила семантического описания картографической информации электронных карт
- •7.4.5.3. Математические элементы и элементы плановой и высотной основы
- •7.4.5.4. Рельеф суши
- •7.4.5.5. Гидрография и гидротехнические сооружения
- •7.4.5.6. Населенные пункты
- •7.4.5.7. Растительный покров и грунты
- •7.4.6. Сводки соседних нл, контроль и приемка работ
- •7.4.7. Приемка электронных карт
- •7.4.8. Хранение и выдача потребителю
- •8. Знакомство с интерфейсом системы «карта 2005»
- •8.1. Общие сведения
- •8.1.1. Запуск и завершение работы системы «Карта 2005»
- •8.1.2. Перемещение изображения
- •8.1.3. Запрос описания объекта карты
- •8.1.4. Работа с клавиатурой
- •8.2. Команды меню Файл (File)
- •8.2.1. Создание электронной карты
- •8.2.1.1. Создание новой карты
- •8.2.1.2. Создание плана
- •8.2.1.3. Создание пользовательской карты
- •8.2.1.4. Создание района
- •8.2.2. Открытие электронной карты
- •8.2.3. Менеджер карт
- •8.2.4. Загрузка данных
- •8.2.4.1. Загрузка векторных данных из формата sxf
- •8.2.4.2. Загрузка файлов графических форматов в растровую карту
- •8.2.5. Сохранение данных
- •8.2.5.1. Сохранение в обменном формате
- •8.2.5.2. Сохранение растровой карты в файл форматов bmp, tiff, rsw
- •8.2.6. Печать карты
- •8.3. Команды меню Правка (Edit)
- •8.4. Команды меню Вид (View)
- •8.4.1. Перечень команд
- •8.4.2. Изменение состава отображаемых объектов карты
- •8.4.3. Изменение вида отображаемых данных
- •8.5. Команды меню Поиск (Search)
- •8.5.1. Перечень команд
- •8.5.2. Поиск объектов карты
- •8.6. Команды меню Задачи (Tools)
- •8.6.1. Перечень команд
- •8.6.2. Навигатор 3d
- •8.7. Команды меню Масштаб (Scale)
- •9. Управление редактором векторной карты
- •9.1. Общие сведения
- •9.2. Нанесение на карту нового объекта
- •9.3. Способы создания объекта
- •9.3.1. Произвольная линия
- •9.3.2. Горизонтальный прямоугольник
- •9.3.3. Наклонный прямоугольник
- •9.3.4. Сложный прямоугольник
- •9.3.5. Окружность заданного радиуса
- •9.3.6. Полуавтоматическая векторизация
- •9.3.7. Параллельная линия
- •9.4. Порядок векторизации элементов содержания карты
- •10. Содержание лабораторных работ
- •Контрольные вопросы
- •Библиографический список
1.3.2. Внешние запоминающие устройства
В качестве внешних запоминающих устройств в ПК используются накопители на гибких дисках (дискетах), накопители на жестких дисках (Hard Drive, или HD), которые называют также винчестером, накопители на оптических и магнитооптических дисках, стримеры и другие виды устройств [3, 5].
Дискеты. Гибкие диски позволяют переносить документы и программы с одного компьютера на другой, хранить информацию, не используемую постоянно на компьютере, делать архивные копии данных, содержащихся на жестком диске.
Оптические диски. Основными достоинствами накопителей на оптических дисках являются: высокая плотность записи информации; универсальность, т. е. пригодность для хранения информации, записанной в различной форме; возможность быстрой перезаписи огромных объемов информации и надежность длительного хранения дисков; низкая удельная стоимость на 1 байт информации.
Выпускаются два типа накопителей на оптических дисках: на компакт-дисках постоянной памяти (CD-R) и на перезаписываемых оптических дисках (CD-RW). CD-R по формату напоминает звуковой компакт-диск, его емкость при стандартном диаметре 130 мм составляет 540 Мб и более.
Стример – это устройство для сохранения всей информации, находящейся на жестком диске. Стример записывает информацию на кассеты с магнитной лентой.
Преимущество стримеров – в низкой стоимости хранения данных. Сейчас она все еще меньше, чем при хранении на перезаписываемых компакт-дисках (CD-RW) или магнитооптических дисках (МО).
Жесткие диски. Накопители на жестких дисках (HD) предназначены для постоянного хранения информации, используемой при работе с компьютером, программ операционной системы, постоянно применяемых пакетов, редакторов, документов и т. д. Без жесткого диска в настоящее время невозможна работа с компьютером.
1.4. Классификация гис по назначению
В настоящее время на рынке представлены 3 вида графических систем: САD, Mapping, полнофункциональные ГИС [5].
САD – это системы для автоматизированного проектирования с использованием средств машинной графики. Такого рода системы работают с техническими чертежами. По оценкам специалистов, черчение составляет около 70 % общей трудоемкости проектной деятельности. Поэтому оправдано стремление использовать компьютеры для снижения затрат на процесс конструирования.
Mapping (картографирование) – программные продукты, предназначенные для профессионального производства цифровых, электронных карт. Эти системы позволяют получить карты, в том числе на твердой основе, качество которых не уступает типографскому. При этом они практически не имеют средств анализа.
ГИС-системы обладают развитыми средствами анализа данных, на основе результатов которого может быть построена новая карта или созданы базы данных. Информация в ГИС предназначена для длительного хранения, передачи в другую систему.
1.5. Классификация гис по архитектуре
Все ГИС, представленные на современном рынке, принадлежат к трем типам архитектуры: закрытым, специализированным и открытым [5].
Основная привлекательность закрытых систем – низкая цена. При этом они не имеют возможностей расширения, у них отсутствуют встроенные языки, не предусмотрено написание приложений, они будут выполнять только то, что выполняют на момент их покупки. Первоначально закрытые системы удовлетворяют покупателя, но если задачи, которые решает пользователь, меняются хотя бы незначительно, то такая система оказывается неспособной их решить. В большинстве случаев закрытые системы вообще невозможно изменить, поэтому они имеют низкие цены и короткий жизненный цикл.
Специализированные системы обычно предлагаются вместе с библиотекой приложений и строятся из определенного набора этих приложений, необходимого пользователю. Такие системы вначале требуют небольших вложений, но если возникает необходимость в новых функциях, цена на пополнение такой системы значительно возрастает. Поэтому приобретая ее и не представляя отчетливо, какие функции вам потребуются в дальнейшем, вы идете на большой риск.
Открытые системы обычно имеют от 70 до 90 % встроенных функций и на 10–30 % могут быть достроены самим пользователем при помощи специального аппарата создания приложений. Термин «открытые» системы означает открытость для пользователя, возможность расширения, изменения, адаптацию к новым форматам, изменившимся данным, связь между существующими приложениями. Пользователь обычно знает свои специфические потребности лучше продавца и, при помощи аппарата построения приложений, может создать наилучшие системы для их выполнения. Покупка таких ГИС сопряжена с минимальным риском столкнуться с трудностями при развитии решаемых задач в будущем. Открытые системы обычно дороги первоначально, но имеют большой жизненный цикл [5] .