
- •Содержание
- •1. Геоинформационные системы
- •1.1. Понятие о географических информационных системах
- •1.2. Развитие и определение гис
- •1.3. Аппаратные средства геоинформатики
- •1.3.1. Основные технические средства
- •1.3.2. Внешние запоминающие устройства
- •1.4. Классификация гис по назначению
- •1.5. Классификация гис по архитектуре
- •2. Организация информации в гис
- •2.1. Модели пространственных данных
- •2.2. Понятие объекта
- •2.3. Понятие слоя
- •2.4. Системы координат в гис
- •2.4.1. Общие сведения о модели фигуры Земли
- •2.4.2. Геодезическая система координат
- •2.4.3. Системы координат
- •2.4.4. Картографические проекции
- •2.4.5. Система координат, принятая в Роскартографии
- •2.5. Ввод графической информации в гис
- •2.5.1. Растровый и векторный форматы
- •2.5.2. Стандартные форматы
- •2.6. Тематическая информация в гис
- •2.6.1. Возникновение баз данных
- •2.6.2. Системы управления базами данных
- •2.6.3. Субд, применяемые в гис
- •3. Технологическая схема обработки данных в гис
- •4. Источники данных гис
- •4.1. Источники пространственных данных
- •4.2. Цифровые карты
- •4.2.1. Цифровое картографирование, определение цифровых карт
- •4.2.2. Классификация цифровых карт
- •4.2.3. Требования к электронным топографическим картам
- •4.3. Материалы дистанционного зондирования
- •4.4. Особенности программного обеспечения для обработки данных дистанционного зондирования Земли
- •4.5. Программное обеспечение для обработки данных дистанционного зондирования. Поставщики программного обеспечения
- •5. Полнофункциональные гис
- •5.1. Общие сведения
- •5.2. Программы ввода информации с традиционных носителей
- •6. Проект «панорама»
- •6.1. Общие сведения
- •6.1.1. Векторизатор «Панорама – Редактор»
- •6.1.2. Кадастровая система «Земля и право»
- •6.1.3. Средства разработки приложений Gis ToolKit
- •6.2. Гис «Карта 2005»
- •6.2.1. Общие сведения
- •6.2.2. Требования к программным и аппаратным средствам
- •6.2.3. Структура программного обеспечения
- •6.2.4. Виды обрабатываемых данных
- •6.2.4.1. Электронная карта в системе «Карта 2005»
- •6.2.4.2. Структура векторных карт
- •6.2.4.2.1. Лист векторной карты
- •6.2.4.2.2. Номенклатура листа
- •6.2.4.2.3. Район работ
- •6.2.4.2.4. Структура пользовательских векторных карт
- •6.2.4.2.5. Групповые объекты
- •6.2.4.2.6. Графические объекты карты
- •6.2.4.3. Структура растровых карт
- •6.2.4.4. Структура матричных данных о местности
- •6.2.4.5. Структура tin-моделей рельефа местности
- •6.2.4.6. Проект электронной карты
- •6.2.5. Создание и применение границ видимости
- •7. Технология создания электронных карт средствами проекта «панорама»
- •7.1. Назначение технологии
- •7.2. Технические средства обеспечения технологии
- •7.3. Состав и качество исходных материалов
- •7.4. Описание технологической схемы
- •7.4.1. Редакционно-подготовительные работы и входной контроль исходных картографических материалов
- •7.4.2. Создание математической и геодезической основы
- •7.4.3. Преобразование исходной картографической информации в растровую форму
- •7.4.3.1. Сканирование исходных материалов
- •7.4.3.2. Контроль качества растрового представления
- •7.4.3.3. Трансформирование растрового изображения
- •7.4.3.4. Контроль точности растрового представления
- •7.4.4. Векторизация объектов по растровому изображению и предварительная обработка данных
- •7.4.5. Правила цифрового описания картографической информации
- •7.4.5.1. Общие правила метрического описания картографической информации электронных карт
- •7.4.5.2. Общие правила семантического описания картографической информации электронных карт
- •7.4.5.3. Математические элементы и элементы плановой и высотной основы
- •7.4.5.4. Рельеф суши
- •7.4.5.5. Гидрография и гидротехнические сооружения
- •7.4.5.6. Населенные пункты
- •7.4.5.7. Растительный покров и грунты
- •7.4.6. Сводки соседних нл, контроль и приемка работ
- •7.4.7. Приемка электронных карт
- •7.4.8. Хранение и выдача потребителю
- •8. Знакомство с интерфейсом системы «карта 2005»
- •8.1. Общие сведения
- •8.1.1. Запуск и завершение работы системы «Карта 2005»
- •8.1.2. Перемещение изображения
- •8.1.3. Запрос описания объекта карты
- •8.1.4. Работа с клавиатурой
- •8.2. Команды меню Файл (File)
- •8.2.1. Создание электронной карты
- •8.2.1.1. Создание новой карты
- •8.2.1.2. Создание плана
- •8.2.1.3. Создание пользовательской карты
- •8.2.1.4. Создание района
- •8.2.2. Открытие электронной карты
- •8.2.3. Менеджер карт
- •8.2.4. Загрузка данных
- •8.2.4.1. Загрузка векторных данных из формата sxf
- •8.2.4.2. Загрузка файлов графических форматов в растровую карту
- •8.2.5. Сохранение данных
- •8.2.5.1. Сохранение в обменном формате
- •8.2.5.2. Сохранение растровой карты в файл форматов bmp, tiff, rsw
- •8.2.6. Печать карты
- •8.3. Команды меню Правка (Edit)
- •8.4. Команды меню Вид (View)
- •8.4.1. Перечень команд
- •8.4.2. Изменение состава отображаемых объектов карты
- •8.4.3. Изменение вида отображаемых данных
- •8.5. Команды меню Поиск (Search)
- •8.5.1. Перечень команд
- •8.5.2. Поиск объектов карты
- •8.6. Команды меню Задачи (Tools)
- •8.6.1. Перечень команд
- •8.6.2. Навигатор 3d
- •8.7. Команды меню Масштаб (Scale)
- •9. Управление редактором векторной карты
- •9.1. Общие сведения
- •9.2. Нанесение на карту нового объекта
- •9.3. Способы создания объекта
- •9.3.1. Произвольная линия
- •9.3.2. Горизонтальный прямоугольник
- •9.3.3. Наклонный прямоугольник
- •9.3.4. Сложный прямоугольник
- •9.3.5. Окружность заданного радиуса
- •9.3.6. Полуавтоматическая векторизация
- •9.3.7. Параллельная линия
- •9.4. Порядок векторизации элементов содержания карты
- •10. Содержание лабораторных работ
- •Контрольные вопросы
- •Библиографический список
4.5. Программное обеспечение для обработки данных дистанционного зондирования. Поставщики программного обеспечения
Сегодня существует несколько главных поставщиков мощных универсальных систем для работы с ДДЗ. Это система анализа данных дистанционного зондирования Земли ERDAS, преобладающая на рынке США и являющаяся мировым лидером по числу пользователей; австралийская компания Earth Resource Mapping (пакет ER Mapper), стремящаяся работать в геолого-геофизическом секторе; канадская компания PCI, завоевавшая известность благодаря активности в создании программного обеспечения для обработки радарных снимков; американская компания International Imagin Systems (Datron), создавшая пакет VI2STA и мощную фотограмметрическую разработку на его основе – PRI2SM [3].
Для другого мирового лидера в области программного обеспечения – компании Intergraph – обработка ДДЗ является одним из многих развиваемых направлений, хотя фотограмметрия занимает достаточно важное место в спектре решений, предлагаемых Intergraph.
Достаточно широко известен в России пакет TNTmips (MicroImages Inc.), использующийся, в частности, для создания дистанционных основ государственного геологического картирования рядом производственных объединений.
Достаточно широким набором алгоритмов обработки ДДЗ обладает программный пакет IDRISI for Windows.
Из российских разработок многие авторы отмечают фотограмметрическое программное обеспечение PHOTOMOD [10], позволяющее не только получать прецизионные фотограмметрические данные, но и проводить визуальное дешифрирование изображений (вектор поверх растра) на экране персонального компьютера в стереорежиме. Последнее особенно важно для России, где специалисты-дешифровщики привыкли работать со стереоскопом, а PHOTOMOD позволяет перенести все наработанные навыки визуального дешифрирования на новую компьютерную основу. Следует отметить, что аналогичные возможности предоставляют программное обеспечение Softplotter и ряд продуктов корпорации Intergraph.
Ниже приведены некоторые характеристики перечисленных программных продуктов.
1. Erdas Imagine (ERDAS).
ERDAS (Earth Resources Data Analysis System) – система анализа данных дистанционного зондирования Земли, представленных в растровых форматах [3, 9]. Cистема работает под управлением Windows NT, Windows 2000 и на RISC/UNIX платформах (SUN, SGI, HP, DEC, IBM). Система модульная, число модулей различно на разных платформах (наибольшее на SUN и SGI).
Характерной особенностью системы является то, что она стала практически стандартной средой разработчика для написания прикладного программного обеспечения для обработки ДДЗ – многие фирмы, не только американские, оформляют свои разработки как модули расширения системы Erdas Imagine.
Из стандартных модулей расширения следует отметить Vector (встроенное в систему Erdas Imagine подмножество ГИС ARC/INFO для рабочих станций), Radar, Image Catalog, Perspective View. B Vista имеются средства для просмотра снимков, импорта-экспорта, преобразований изображения, выполняемых «на лету», а также средства подготовки оформленных твердых копий и некоторые утилиты. Production, помимо этого, содержит богатый набор средств для обработки изображения и пространственного анализа на базе растровой модели. Имеются процедуры классификаций, средства привязки и трансформирования изображений. Есть утилита для построения мозаики из нескольких изображений, сливающая их в один файл.
Для растра используется формат IMG, в котором хранятся как сам растр, так и сопровождающие его данные, включая сведения о картографической проекции, опорных точках, статистику. Формат описан в документации, и имеются свободно распространяемые библиотеки для доступа к нему. Есть возможность импортировать практически любую произвольную структуру растра с помощью функций импорта двоичного и ASCII-файлов общего вида (Generic binary loader, ASCII loader).
ERDAS имеет несколько векторных форматов, в том числе векторно-топологический (покрытия ARC/INFO).
2. TNTmips (Microlmaqes Inc.).
TNTmips является пакетом обработки изображений, которому присущи черты ГИС, CAD и систем управления пространственными базами данных [3].
TNTmips имеет доступ к некоторым внешним форматам данных, но большинство данных импортируется в собственный формат. Импорт осуществляется из 58 различных растровых, векторных и CAD-форматов, включая покрытия ARC/INFO, форматы Generate и Interchange, AutoCAD DXF, файлы DGN MicroStation и файлы формата Shape ARC/INFO. Тридцать из этих форматов доступны для экспорта.
Достаточно легко обращаться с меню TNTmips для доступа и запуска различных функций обработки изображений. Некоторые операции (контрастирование и фильтрация) могут быть выполнены в памяти или режиме предварительного просмотра. Большинство операций требуют записи файла на диск. Вывод графики быстрый, и есть возможность остановки операции. Еще одно преимущество TNTmips – разнообразие наборов инструментов географической привязки и мозаики изображений. Многие из них особенно полезны для обработки материалов аэрофотосъемки с малых высот.
Интересно заметить, что большинство североафриканских стран с относительно плохой изученностью природных ресурсов используют TNTmips как основной пакет по обработке данных зондирований.
Начиная с версии 4.9, продукт дополнен средствами корректировки снимков с российских спутников.
3. PHOTOMOD (ЗАО «Ракурс», Россия).
Система PHOTOMOD (ЗАО «Ракурс», Россия) предназначена для многофункциональной прецизионной фотограмметрической обработки стереопарных изображений. Работает на персональных компьютерах (в том числе с достаточно умеренными характеристиками) в операционных средах Windows 98, Windows NT, Windows 2000 [10].
Изначально разработчики пакета ставили задачу создания инструмента, не уступающего по функциональным возможностям средствам, функционирующим на базе RISC-UNIX-станций, но в тоже время работающего на персональных компьютерах и обладающего значительно меньшей стоимостью.
Пакет программных модулей для проведения основных фотограмметрических работ позволяет провести ориентирование стереопары, регулярной и нерегулярной (адаптивной) триангуляционной сети или «гладкой» модели, интерактивное редактирование ЦМР в стереорежиме визуализации, построение ортофото и горизонталей, векторизацию по ортофото с возможностью измерения трехмерных характеристик создаваемых объектов. Имеется модуль дешифрирования в стереорежиме с установлением топологических связей и экспортом в векторно-топологический формат.
Для обеспечения работы в стереорежиме в пакете PHOTOMOD используются два средства стереоскопической визуализации: цветной анаглифический (очки со светофильтрами), позволяющий выводить на печать стереоскопические, в том числе цветные изображения, и основанный на стереоочках с LCD-затворами, инфракрасным синхронизатором и эмиттером инфракрасного синхросигнала.
Система отличается автоматизацией и высокой точностью измерений благодаря коррелятору, работающему с субпиксельной точностью.
Пакет программных средств PHOTOMOD состоит из четырех модулей. Базовый модуль PHOTOMOD включает встроенную базу данных, служащую для управления работой программных модулей и хранения информации; обеспечивает ввод данных и проведение внутреннего, взаимного и внешнего ориентирования стереопары; служит для построения стереоизображения и проведения пространственных измерений.