
- •Під редакцією в.Н. Парсяка
- •Передмова
- •Розділ 1. Методи дослідження і моделювання соціально-економічних систем
- •1.1. Економічна система як об’єкт моделювання
- •1.2. Етапи економіко-математичного моделювання
- •1.3. Класифікація економіко-математичних методів і моделей
- •Розділ 2. Особливості економетричних моделей
- •2.1. Загальне поняття економетричної моделі
- •2.2. Формування сукупності спостережень
- •2.3. Поняття однорідності спостережень
- •2.4. Точність вихідних даних
- •2.5. Вибір змінних і структура зв’язків
- •2.6. Основні складові частини класичної моделі нормальної регресії
- •Розділ 3. Парна лінійна регресія
- •3.1. Суть задачі побудови парної лінійної регресії
- •3.2. Передумови застосування методу найменших квадратів (1мнк)
- •3.3. Мнк для парної лінійної регресії
- •3.4. Поняття про ступені вільності
- •3.6. Інтервали довіри для параметрів та
- •3.7. Оцінка щільності та перевірка істотності кореляційного зв’язку
- •3.8. Коефіцієнт детермінації
- •3.9. Перевірка парної лінійної регресії на адекватність за -критерієм Фішера
- •3.10. Прогнозування за моделями парної лінійної регресії
- •Приклад 1. Лінійна парна регресія
- •Розділ 4. Нелінійні моделі та їх лінеаризація
- •Приклад 2. Нелінійна парна регресія
- •Розділ 5. Багатофакторна лінійна регресія
- •5.1. Класична лінійна багатофакторна модель
- •5.2. Основні припущення в багатофакторному регресійному аналізі
- •5.3. Етапи побудови багатофакторної регресійної моделі
- •5.4. Розрахунок невідомих параметрів багатофакторної регресії за мнк
- •5.5. Перевірка гіпотез щодо параметрів багатофакторної регресії в матричному вигляді
- •5.6. Знаходження інтервалів довіри для параметрів
- •5.7. Побудова економетричної моделі на основі покрокової регресії
- •5.8. Коефіцієнти множинної кореляції та детермінації
- •5.10. Коефіцієнт детермінації та оцінений коефіцієнт детермінації
- •5.10. Перевірка моделі на адекватність за f - критерієм Фішера
- •5.11. Прогнозування за багатофакторною регресійною моделлю
- •Приклад 3. Багатофакторна лінійна регресія
- •Приклад 4. Побудова економетричної моделі на основі покрокової регресії
- •Приклад 5. Оцінка коефіцієнтів детермінації
- •Приклад 6. Перевірка адекватності моделі
- •Розділ 6. Мультиколінеарність
- •6.1. Поняття мультиколінеaрності
- •6.2. Ознаки мультиколінеарності
- •6.3. Алгоритм Фаррара-Глобера
- •Розділ 7. Автокореляція
- •7.1. Поняття автокореляції
- •7.2. Наслідки автокореляції залишків
- •7.3. Перевірка наявності автокореляції Критерій Дарбіна-Уотсона
- •7.4. Критерій фон Неймана
- •7.5. Нециклічний коефіцієнт автокореляції
- •7.6. Циклічний коефіцієнт автокореляції
- •Розділ 9. Гетероскедастичність
- •9.1. Поняття гетероскедастичності
- •9.2. Перевірка гетероскедастичності на основі критерію
- •9.3. Параметричний тест Гольдфельда-Квандта
- •Приклад 8. Перевірка наявності гетероскедастичності
- •Розділ 10. Економетричні симультативні моделі
- •10.1. Системи одночасних структурних рівнянь
- •10.2. Загальні поняття про методи оцінювання
- •10.3. Попередні відомості про структурні моделі. Ілюстративний приклад
- •10.4. Структурні моделі скороченої форми
- •10.5. Проблема ототожнення в симультативних моделях
- •10.6. Основні правила ототожнення
- •10.7. Рангова умова ототожнення
- •10.8. Методи оцінювання невідомих параметрів симультативних моделей
- •Приклад 9. Побудова системи одночасних структурних рівнянь
- •Розділ 11. Економетричний аналіз виробничих функцій
- •11.1. Гранично агреговані моделі відтворювальних процесів
- •11.2. Різновиди виробничих функцій
- •11.3. Виробнича функція Кобба-Дугласа
- •Приклад 10. Виробнича функція Кобба-Дугласа
- •Розділ 12. Методи і моделі аналізу динаміки економічних процесів
- •12.1. Поняття економічних рядів динаміки
- •12.2. Попередній аналіз і згладжування часових рядів економічних показників
- •12.3. Згладжування тимчасових рядів економічних показників
- •12.4. Тренд-сезонні економічні процеси і їх аналіз
- •12.5. Ітераційні методи фільтрації
- •Приклад 11. Метод Четверикова
- •12.6. Статистичні методи оцінки рівня сезонності
- •Приклад 12. Оцінка рівня сезонності часового ряду
- •Розділ 13. Моделі прогнозування економічних процесів
- •13. 1. Метод екстраполяції на основі кривих зростання економічної динаміки
- •13.2. Методи оцінки параметрів кривих зростання
- •13.3. Оцінка адекватності і точності трендових моделей
- •Приклад 13. Ооцінка адекватності і точності трендової моделі
- •13.4. Прогнозування економічної динаміки на основі трендових моделей
- •Приклад 14. Оцінка прогнозу на основі трендової моделі
- •Список використаної літератури
- •Додатки Додаток а. Процентилі t-розподілу
- •Додаток e. Критичні значення для відношення фон Неймана
2.4. Точність вихідних даних
Висновки, які можна зробити в результаті економетричного моделювання, цілком зумовлені якістю вихідних даних – їх повнотою та вірогідністю. Це одна з найважливіших особливостей економетричного моделювання, на яку звертають увагу багато видатних економетристів. Так, наприклад, О. Моргенштерн ступінь точності даних, які необхідні для дослідження, ставить в пряму залежність від тієї конкретної мети, заради якої виконується вимірювання. При економічних розрахунках постає питання про точність (помилку) економічних показників. Похибки показників виникають і нагромаджуються при побудові алгоритму розрахунку, при формуванні даних, у процесі обчислень. Найістотніші похибки можуть виникати при переведенні понять економічної теорії в показники. Ці помилки можна назвати помилками, пов’язаними з розрахунком економічних показників. Вони спричинюються неточністю і неповнотою визначення змісту показників, невідповідністю між вимогами і фактичним змістом, коли в принципі не можна точно виміряти економічні процеси та явища.
Усі помилки поділяються на систематичні та випадкові.
Систематичні помилки або мають постійну величину, або змінюються, підпорядковуючись певній функціональній залежності. Вони завжди однонапрямлені і можуть бути істотними за величиною.
Випадкові помилки зумовлюються впливом випадкових чинників при формуванні показників. При повторних розрахунках економічних показників такі помилки можуть взаємно погашатись. Проте це не означає, що й економічні наслідки випадкових помилок мають ті самі властивості. Часто відхилення в оцінці показника в будь-який бік призводять до втрат або економічні наслідки є нелінійною функцією випадкових помилок. Тому, формуючи сукупність спостережень для побудови економетричної моделі, слід звертати увагу на можливість існування помилок у вихідних даних. Якщо немає змоги позбутись цих помилок (а впевненість в їх наявності існує), то слід використовувати спеціальні методи оцінювання параметрів економетричної моделі.
2.5. Вибір змінних і структура зв’язків
Економетричне моделювання базується на деякій сумі професійних знань про об’єкт дослідження. До завдань попереднього аналізу належить вирішення таких основних питань:
– визначення набору змінних, які описують процес функціонування досліджуваних об’єктів;
– аналіз взаємозв’язків між окремими змінними;
– установлення переліку допустимих операцій над змінними і зв’язками, тобто вибір раціонального типу економетричної моделі.
Питання вибору результативних ознак (економічних показників), що моделюються, вирішується відносно просто. Вони часто задані формулюванням мети дослідження. Вибір незалежних змінних (ознак-факторів) є процесом послідовного уточнення початкової гіпотези. У цьому процесі можна вирізнити такі етапи: формування початкової гіпотези про набір незалежних змінних; експертна оцінка цього набору; аналіз взаємозв’язків; добір і звуження кола істотних для моделювання змінних.
В основу формування початкової гіпотези про набір змінних покладено загальну схему функціонування об’єкта, що моделюється. На перелік змінних, які вносяться до початкового набору, має вплив призначення моделі, тип дослідження і т. ін.
Звуження початкового набору змінних – процес багатостадійний, який відбувається на всіх етапах побудови моделі: під час проведення апріорного аналізу і формування робочої гіпотези (ще до збору вихідних даних), на етапі їх попереднього аналізу і перетворення і навіть на етапі побудови моделі. В основу процесу звуження набору змінних на стадії формування робочої гіпотези покладено результати експертного опитування та змістовні міркування різного типу; можливість і точність вимірювань; трудомісткість збору даних; діапазон варіації і можливість регулювання значень змінних; максимально допустиме їх число; функціональні зв’язки та ряд інших міркувань.