Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника (конспект).doc
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
9.37 Mб
Скачать
  1. Тепловой шум (Джонсона).

Любой резистор генерирует на своих концах шум напряжений. У него горизонтальный частотный спектр (одинаковая мощность шума на всех частотах). Шум с горизонтальным спектром называется «белым шумом».

, где k - постоянная Больцмана; Т - абсолютная температура в кельвинах; R – сопротивление; В - полоса частот, Гц.

Например, резистор с R=10 кОм, при комнатной температуре в полосе пропускания В=10 кГц имеет среднеквадратичное напряжение шума в разомкнутой цепи порядк Uш = 1,3 мкВ. Для уменьшения теплового шума можно уменьшить температуру резистора.

  1. Дробовой шум.

Электрический ток представляет собой движение дискретных зарядов, а не плавное непрерывное течение. Конечность заряда приводит к статистическим флуктуациям тока, определяемым по формуле:

, где

q- заряд электрона, ;

I n – постоянный ток, проходящий через резистор;

B – ширина полосы частот измерения.

Значение этого шума (в % - м отношении) тем меньше, чем выше ток.

3) Шум 1/f (фликкер - шум).

Дробовой и тепловой шумы – это неуменьшаемые в данных условиях виды шума, происходящие вследствие действия физических законов. Самый дорогой резистор имеет тот же тепловой шум, что и дешевый углеродный резистор с таким же сопротивлением.

Реальные источники имеют различные источники шумов: флуктуации сопротивления, порождающие дополнительные напряжения шума, пропорциональные протекающему току. Этот шум зависит от конструкции резистора, резистивного материала и, в особенности, от концевых соединений. Шум имеет спектр 1/f (постоянная мощность на декаду частоты), иногда его называют «розовый шум».

4) Шум тока базы транзистора и шум катодного тока в электронных лампах.

Биполярные транзисторные усилители могут обеспечить очень хорошие шумовые параметры в диапазоне от 200 Ом до 1 МОм, при токе коллектора менее 1 мкА.

При больших сопротивлениях источника >100 кОм преобладает шум тока транзистора, поэтому лучшим устройством для усиления сигнала с шумом будет ПТ, хотя у него шум напряжения больше чем у БПТ, но ток затвора и его шум исчезающе малы.

При очень малых сопротивлениях < 50 Ом всегда будет преобладать шум напряжения транзистора и коэф. шума будет неудовлетворительным. Лучше использовать трансформатор для увеличения уровня и сопротивления источника сигнала.

С целью уменьшения шумов используется параллельное соединение БПТ. Шумы при этом уменьшаются в раз, где количество параллельно соединенных БПТ.

С помощью замкнутых объемов со стенками из материала с высокой проводимостью, мы можем практически полностью экранировать приемник от электростатических помех.

Магнитную составляющую помехи исключить невозможно. Ее можно только уменьшить путем экранирования с использованием материала с высокой магнитной проводимостью (например, пермоллой).

Очень важную роль играет заземление.

Помехи бывают продольные и поперечные.

Подавление продольных помех очень эффективно осуществляется продольным трансформатором – режекторным дросселем.

Здесь по отношению к полезному дифференциальному сигналу трансформатор не является индуктивным сопротивлением благодаря встречному включению обмоток, а продольным синфазным помехам он оказывает индуктивное сопротивление.

Схема полезна для подавления ВЧ помех, когда в качестве сердечника используется небольшое ферритное кольцо, в которое один или несколько раз продевается витая пара сигнальных проводов.

Помехи, порождаемые магнитными полями, пропорциональны площади пересекаемого переменным магнитным потоком контура и зависит от ориентации этого контура по отношению к источнику наводки.

ЭДС, наводимая полем будет создавать поперечную наводку, поэтому дифференциальный вход не помогает.

В схемах 1 – 6 цепи заземлены с двух сторон, возвратные токи источника сигнала проходят через шину земли полностью или частично, поэтому площадь контура велика.

В схемах 7 – 11 проводник возвратного тока расположен близко к сигнальному, поэтому подавление выше.

В схемах 1 – 2 магнитного экранирования нет, т.к. контур не изменился по сравнению с простым проводником. Такое заземление обеспечивает экранирование от электрического поля.

Заземление обоих концов дает малый эффект.

Усилительные каскады на ПТ и БПТ. Статистический режим работы усилительного каскада, выбор рабочей точки, схемы задания напряжения смещения БПТ. Расчет по постоянному и переменному току каскадов с ОЭ и ОК. Сравнительный анализ каскадов ОЭ, ОК, ОБ. Каскад с ОЭ как преобразователь напряжение-ток, фазоинверсный каскад. Усилительные каскады на ПТ, схемы задания напряжения смещения, особенности их работы и включения. Динамическая нагрузка, источник тока, токовые зеркала и отражатели тока на ПТ и БПТ. Ослабление влияния температуры и эффекта Эрли. Токовое зеркало Уилсона, выходное сопротивление источника тока. Области применения

Каскад усиления переменного тока по схеме ОЭ построен на биполярном транзисторе n-p-n. Расчет каскада сводится к выбору точки покоя на статической линии нагрузки, определению величин Rк и RБ по заданным параметрам нагрузки, например, Um вых и Rн, и напряжению источника питания Eк.

Выбранная точка покоя должна обеспечить требуемую величину тока в нагрузке, напряжения на нагрузке без нелинейных искажений и удовлетворять предельным параметрам транзистора. Поэтому ток покоя:

I кпImнUm вых/Rн

Напряжение покоя обычно выбирается Uкэп=Eк/2, чтобы обеспечить максимальное выходное напряжение без искажений.

Уравнение статической линии нагрузки

Iк=

Л инию нагрузки можно построить в координатах Iк, Uкэ по двум точкам. Одна из них - точка покоя П, координаты которой определены. Вторая может быть получена согласно уравнению - если принять Iк=0, то Uкэ=Eк. Построение статической линии нагрузки показано на рисунке справа (линия ав).

Чтобы обеспечить заданный режим покоя, надо рассчитать величины Rк и RБ:

;

При работе каскада в режиме холостого хода и рабочая точка перемещается по статической линии нагрузки в обе стороны от точки покоя. Амплитуда переменной составляющей напряжения коллектор-эмиттер или равного ей выходного напряжения не может быть больше Eк/2.

При работе каскада на нагрузку в коллекторную цепь параллельно включается . Поэтому режим работы каскада меняется. Рабочая точка перемещается по динамической линии нагрузки, уравнение которой

;

Динамическая линия нагрузки должна проходить через точку покоя П (частный случай - iкэ=0). Вторую точку можно получить, задавшись приращением iк и подсчитав изменение напряжения Uкэ относительно координат точки покоя. Динамическая линия нагрузки показана на рисунке (c-d). Очевидно, что угол между осью Uкэ и динамической линией нагрузки тем больше, чем меньше Rн (при Rн=0 он составит 90). В связи с этим предельная амплитуда выходного напряжения Uвых пр с уменьшением становится меньше Eк/2. Это может вызвать появление нелинейных искажений. Если заданное значение Um вых, больше, чем Uвых пр, чтобы избежать нелинейных искажений, надо сместить точку покоя. Увеличивают Iкп и анализ повторяют.

Динамические параметры каскада:

;

;

.

Расчёт каскада с общим эмиттером по постоянному и переменному току.

Расчёт может осуществляться либо слева направо, либо справа налево. Слева направо.

Дано: Rg = 1кОм

U = 20В

h21 = 100

kU = 20

fн = 200

δн = 6дБ

Найти: R1, R2, Rк, Rэ1, Rэ2, Rн,C1,2, C3.

По постоянному току:

1.

Шина питания по постоянному току эквипотенциальна земле (через Сф)

2. Rвх = Rэ1h21 = 10Rд = 100k => Rэ1 = 1кОм

3. Rэ/Rк = 0,1 – 0,3 => Rк = 5.1кОм

4. RH=l0Rвых = 51кОм

(Rвых = Rкб||Rк)

5. Uк = Uп/2=>Iк = Uп/2·1/Rк = 2мА

6. Uэ = IэRэ1 = 2В

7. Uб =Uэ+ 0,6 = 2,6В

8. R1/R2 = 17,4/2,6 = 6,7

9. => R2 = 77/6.7 = 11кОм = 12кОм

R1 = 75кОм = 82кОм 10. rэ0 = φТ/Iк = 25/2 = 12,5Ом

По переменному току:

11. kU = Rк/(Rэ+rэ0) => Rэ+rэ0 = 255Ом => Rэ = 242,5Ом

Rэ1·Rэ2/(Rэ1+ Rэ2) = 242,5Ом

Rэ1 = 1кОм => Rэ2 = 330Ом

12. δэ = 0,5 δ = 3дБ

При понижении частоты, ёмкостное сопротивление Сэ возрастает, увеличивается эквивалентное сопротивление в эмиттерной цепи и уменьшается коэффициент усиления.

Z/R = √2 => R = Xc = Rэ2+rэ0 = 342,5Ом

13.δ1 = δ2 = 1,5дБ

14.

=>XC = 6,44кОм

C1 = 120нФ

15. δ1 = δ2 = 1,5дБ

Rн/Rд = 5 => XC2/XC1 = 5 => C1/C2 = 5 =>C2 =33нФ

Обратные связи (ОС) в усилителях. Положительная (ПОС) и отрицательная (ООС) обратные связи. Коэффициент ОС и глубина ОС. Влияние ОС на параметры и характеристики усилителей. Последовательная и параллельная ООС по напряжению и току, следящая ПОС. Примеры принципиальных схем с ОС

В общем случае обратную связь (ОС) можно определить как связь выходной цепи усилителя или каскада усиления с его входной цепью. Она образуется тогда, когда усиленный сигнал с выхода отдельного каскада усилителя или усилителя в целом передается на его вход через цепи, дополнительно вводимые для этого (внешняя ОС) или уже имеющиеся в нем для выполнения других функций (внутренняя ОС). К последним, например, относятся общая цепь источника питания усилителя, межэлектродные емкости в электронных приборах.

В большинстве случаев внутренняя ОС и непреднамеренно возникшие цепи внешней ОС (например, из-за близкого расположения при монтаже деталей, соединительных проводов входных и выходных цепей усилителя) вызывают так называемую паразитную ОС. В реальных устройствах паразитная связь, как правило, приводит к изменению их свойств в худшую сторону и возникновению других нежелательных явлений (в частности, генерацию паразитных колебаний, частоты которых значительно выше или ниже частот усиливаемых колебаний), часто трудно поддающихся контролю и устранению.

На рисунке приведена структурная схема усилителя с коэффициентом усиления К, охваченного внешней цепью ОС с коэффициентом передачи β. Цепь вместе с усилителем, к которому она подключена, образует замкнутый контур, называемый петлей ОС. Стрелками  показаны  направления   прохождения сигнала.

Часть усиленного внешнего сигнала с выхода усилителя (прямая цепь передачи сигналов) поступает по цепи ОС на его вход и складывается там с внешним сигналом. При таком сложении амплитуд сигналов (внешнего и ОС) на входе усилителя возможны два принципиально отличных по конечному действию случая: либо сумма амплитуд сигналов больше амплитуды внешнего сигнала (фазы колебаний с одинаковой частотой на выходе цепи ОС и входной сигнала совпадают, сдвиг фаз равен 0°), либо меньше его (их фазы противоположны, сдвиг фаз равен 180°). В первом случае говорят о ПОС (положительной обратной связи), во втором – о ООС (отрицательной ОС). В большинстве случаев ПОС паразитная.

Обратная связь (ОС), охватывающая один каскад, называется местной, несколько - общей.

Если во входной цепи усилителя вычитается ток в цепи ОС из тока входного сигнала, то такую ООС называют параллельной. Если во входной цепи вычитается напряжение входного сигнала из сигнала ОС, то такую ООС называют последовательной. По способу получения (снятия) сигнала ООС с выхода усилителя различают ООС по напряжению (когда сигнал ООС пропорционален UВЫХ усилителя) и по току (сигнал ООС пропорционален току через нагрузку).

Последовательная ОС по напряжению

При последовательной обратной связи по напряжению с сопротивления нагрузки усилителя снимается часть выходного напряжения , которое во входной цепи алгебраически складывается с .

Напряжение обратной связи Uос = χUвых где χ – коэффициент ОС.

χ = R2/(R1+R2) ≈R2/R1 (обычно R1<<R2).

Прежде всего рассмотрим влияние последовательной ОС по напряжению на коэффициент усиления по напряжению. Для усилителя, охваченного обратной связью,

кuoс = Uвых/(Uвх±Uос) = Uвых/[Uвх(1±χкu)]

но коэффициент усиления по напряжению усилителя без обратной связи кu = Uвых/Uвх, поэтому после проведения преобразования для ООС можно записать:

Киоси/(1+χки).

При ПОС в знаменателе правой части следует использовать знак «минус».

Введем понятие глубины обратной связи F. Для ООС F = 1+χкu. Отсюда следует, что глубина ООС возрастает при увеличении χ и Ки, При очень глубокой ООС F = χкu, , поэтому в данном случае можно записать

кuос = 1/χ = (R1+R2)/R2

Вывод: при глубокой ООС (F>10) удается практически полностью исключить влияние пара­метров транзистора и всего усилителя на его КиОС. Не будут влиять такие факторы, как изменение температуры, радиационное воздействие, разброс параметров, старение и др. Таким образом, можно утверждать, что введение глубокой последовательной ООС по напряжению обеспечивает стабильность усиления по напряжению.

Улучшение стабильности коэффициента усиления с помощью ООС широко используется для расширения АЧХ усилителя. При отклонении в области НЧ или ВЧ уменьшается Ки, но уменьшается и глубина ООС, т.е. 1+ χ Ки. В результате КиОС изменяется слабо и ре­ализуется АЧХ с широкой полосой пропускания.

Улучшение стабильности коэффициента усиления с помощью ООС широко используется для расширения АЧХ усилителя

Входное сопротивление усилителя с ООС Rвх.ос определяется способом подачи сигналов обратной связи во входную цепь. При последовательной ООС по напряжению Rвх.ос можно пред­ставить как Rвх.ос = Uвх(1+χкu)/Iвх = RвхF.

Отсюда следует, что последовательная ООС по напряжению увеличивает входное сопротивление усилителя в F раз.

Выходное сопротивление усилителя с ООС определяется способом снятия сигнала обратной связи с выхода устройства. При последовательной ООС по напряжению Uвьч усилителя меньше зависит от тока нагрузки, что соответствует уменьшению его выходного сопротивления. Для рассматриваемого вида ООС можно записать

Rвых.ос = Rвых/F

Отсюда следует, что последовательная ООС по напряжению уменьшает выходное сопротивление в F раз. Таким образом, чем глубже ООС, тем меньше Rвых.ос. Изложенное выше позволяет заключить, что последовательная ООС по напряжению уменьшает и стабилизирует коэффициент усиления по напряжению, снижает как линейные, так и нелинейные искажения, повышает входное сопротивление и уменьшает выход­ное сопротивление усилителя.

Rос

Сос

Последовательный усилитель с ОС по напряжению 100% последовательная ОС по напряжению

Последовательная ОС по току

При последовательной обратной связи по току в выходной цепи усилителя включается специальный резистор ,

падение напря­жения на котором

пропорционально выходному току.

Во входной цепи усилителя это алгебраически складывается с входным напряжением.

.

При глубокой ООС по току эту формулу можно преобразовать к следующему виду:

Последовательная ООС по току, как и по напряжению, уменьшает частотные искажения (расширяет полосу пропускания АЧХ) и нелинейные искажения усилителя. Введение ООС снижает также влияние помех и наводок, проникающих в усилитель.

Входное сопротивление усилителя с ООС определяется способом подачи сигналов во входную цепь

Наиболее существенное отличие последовательных ООС по напряжению и току проявляется через величину RвыхОС. Выходное сопротивление усилителя с ООС определяется способом снятия сигнала обратной связи с выхода устройства. При этом способ подачи сигнала ООС во входную цепь не играет никакой роли. Для RвыхОС усилителя, охваченного ООС по току, можно записать следующее выражение:

откуда следует, что выходное сопротивление возрастает. Таким образом, рассмат­риваемая ООС приводит к увеличению RвьхОС, причем тем в большей степени, чем глубже обратная связь.

Изложенное выше позволяет заключить, что последовательная ООС по току стабилизирует коэффициент усиления по напряже­нию при постоянной нагрузке, снижает искажения, повышает входное и выходное сопротивления усилителя.

Параллельная ОС по току

При параллельной обратной связи по току в выходной цепи усилителя включается специальный резистор R, падение напряже­ния на котором пропорционально выходному току. Это напряже­ние образует во входной цепи ток обратной связи, протека­ющий через специальный дополнительный резистор Rос. Во входной цепи усилителя происходит алгебраическое сложение Iос и тока входного сигнала. На рисунке приведена структурная схема усилителя с параллельной обратной связью по току. Здесь , а коэффициент обратной связи по току Глубина ООС по току

Коэффициент усиления по току

где - коэффициент усиления по току без ООС. При глубокой парал­лельной ООС по току

Отметим также, что введение параллельной ООС по току уменьшает как линейные, так и нелинейные искажения токовых сигналов.

Так как входное сопротивление усилителя в ООС определяется лишь способом подачи сигнала обратной связи во входную цепь, то для параллельной ООС можно записать:

.

Здесь во входной цепи усилителя алгебраически складываются токи. Таким образом, параллельная ООС уменьшает RвхОС, причем величина RвхОС обратно пропорциональна глубине ООС по току.

Как было выше показано, ООС по току способствует увеличе­нию выходного сопротивления усилителя. Для параллельной ООС по току RвыхОС может быть рассчитано по следующей приближенной формуле:

Изложенное выше позволяет заключить, что параллельная ООС по току уменьшает и стабилизирует коэффициент усиления по току, снижает искажения токовых сигналов, уменьшает входное и увеличивает выходное сопротивления усилителя.

Параллельная ОС по напряжению

П ри параллельной обратной связи по напряжению с сопротивле­ния нагрузки снимается выходное напряжение, которое во входной цепи образует ток обратной связи, протекающий через специаль­ный резистор. На рисунке приведена структурная схема усилителя с параллельной обратной связью по напряжению. Хотя во входной цепи усилителя алгебраически складываются токи, при анализе усилителя с параллельной ООС по напряжению часто используют коэффициент обратной связи по напряжению . При этом необходимо учитывать шунтирующее влияние входной цепи усилителя, поскольку в данном случае Rвх . Поэтому можно представить в следующем виде:

.

Выделение напряжения во входной цепи усилителя происходит на сопротивлениях .

За счет малого Rвх на внутреннем сопротивлении источника сигнала Rг будет теряться солидная доля Ег В результате ко входу усилителя прикладывает­ся напряжение

.

Коэффициент усиления по напряжению при глубокой параллельной ООС по напряжению:

.

При параллельной ООС по напряжению КиОС стабилен при Таким образом, при глубокой параллельной ООС по напряжению можно исключить влияние внешних факторов на величину Ки0с, уменьшить линейные и нелинейные искажения. Однако такой усилитель совершенно не подходит по своим свойствам для входного каскада многокаскадного усилителя, в частности, из-за его высокой, чувствительности к изменению Rг. Усилители с параллельной ООС по напряжению рекомендуется использовать в качестве промежуточных и выходных каскадов.

Вывод: параллельная ООС по напряжению стабилизирует коэффициент усиления по напряжению при постоянном сопротивлении источника сигнала, снижает искажения, уменьшает входное и выходное сопротивления усилителя.

Схема усилителя с параллельной ООС.

Следящие связи. На обоих концах резистора присутствует практически одно и то же переменное напряжение => переменный ток через резистор не течёт, а значит его сопротивление по переменному, току стремиться к бесконечности, а кu = Rк/Rэ стремится к бесконечности.

Пример следящей связи, увеличивающей сопротивление и уменьшающей влияние входной емкости:

Интегральные микросхемы. Интегральный принцип изготовления и применения электронных компонентов. Полупроводниковые интегральные микросхемы, их классификация, назначение, области применения. Аналоговые, цифровые и аналого-цифровые микросхемы

Развитие техники, в которой широко применяются сложные системы автоматического управления, вынудило изготовителей электронных элементов заняться их миниатюризацией и микроминиатюризацией. На первом этапе добивались уменьшения размеров отдельных элементов путем применения лучших материалов, уменьшения электрической нагрузки элементов и т. д. без изменения их конструкции и технологии изготовления. Полученные результаты не дали требуемого эффекта, и поэтому были разработаны принципиально новые методы создания электронных схем, которые с начала шестидесятых годов использовались в военной аппаратуре, а позже в промышленных установках и бытовой технике.

Миниатюрные электронные схемы изготавливают в основном двумя способами:

  • нанесением на изоляционную подложку тонких пленок металлов, полупроводников и диэлектриков таким образом, чтобы их поверхности образовывали резисторы, конденсаторы, диоды и транзисторы; это — пленочные интегральные микросхемы;

  • путем создания в пластине монокристалла кремния диодов, транзисторов, резисторов и конденсаторов за счет введения соответствующих примесей в определенные области, их окисления или металлизации; это — полупроводниковые интегральные микросхемы.

Внедрение этих новых технологических решений привело к значительному уменьшению размеров электронных схем и к увеличению плотности монтажа, т. е. количества элементов, находящихся в 1 см3 объема. Для отдельных схем плотность монтажа ориентировочно составляет, 1/см3:

Традиционные ламповые схемы –– 0,03—0,1

Полупроводниковые схемы с миниатюрными элементами –– 1––3

Интегральные микросхемы (микросборка) –– 300

Интегральные микросхемы (отдельные пластины) ––100тыс.

К сожалению, большая плотность монтажа интегральных микросхем не может быть полностью использована на практике из-за необходимости соединений отдельных схем, охлаждения и т. п.

Часто также применяют гибридные интегральные микросхемы, т. е. схемы, часть элементов которых имеет самостоятельное конструктивное оформление, так как не все элементы можно изготовить способами микроэлектроники. К таким элементам относятся, например, катушки индуктивности, специальные транзисторы и др.

Тонкие пленки обычно получают путем напыления в вакууме соответствующих материалов на подложку (стекло, керамика). Тщательный подбор условий и времени напыления позволяет получить небольшой разброс электрических параметров элементов, например 5% и менее для сопротивлений резисторов.

Резисторы изготавливают путем напыления на подложку (обычное стекло, SiO) резистивного материала в форме прямоугольников соответствующих размеров. В процессе изготовления используется метод фотолитографии. Резистивными материалами могут быть хром, тантал, окиси металлов, специальные сплавы. Сопротивление тонкопленочных резисторов лежит в пределах от долей Ома до 1 МОм при толщине пленки до нескольких микрометров. Контактные соединения выполняют путем напыления золота, меди, чаще всего алюминия, который имеет хорошую адгезию с подложкой из: SiO.

Конденсаторы получают путем последовательного напыления слоя металла (AI), диэлектрика и металла. В качестве диэлектрика используют SiO, SiO2, окиси тантала и титана. Этим способом можно получить низковольтные конденсаторы с емкостями до 0,1 мкФ. На готовые тонкопленочные элементы напыляют изолирующую пленку SiO, герметически покрывающую всю схему.

Активные элементы, работающие совместно с тонкопленочными схемами, изготавливают подобными методами. Среди транзисторов чаще других применяют полевые. Один из таких транзисторов представлен на рис.: на подложку напылена полупроводниковая пленка (CdS или CdSe), затем два металлических электрода — исток и сток. Область между этими электродами покрыта слоем диэлектрика (SiO), на который осажден слой металла, образующий затвор. Изменение напряжения затвора вызывает изменение напряженности электрического поля в слое полупроводника, а значит, и тока в цепи исток — сток. Однако свойства тонкопленочных транзисторов хуже, чем у обычных, и поэтому последние часто используют в гибридных интегральных микросхемах.

В полупроводниковых интегральных микросхемах используется монокристалл кремния, в котором путем введения примесей, окисления или металлизации определенных областей, а также использования фотолитографии получают необходимые электрические параметры. Каждый элемент такой схемы образует в монокристалле своеобразный островок, изолированный от других элементов. Обеспечение хорошей изоляции отдельных элементов — одна из сложных проблем. Два противоположно направленных р-n -перехода, каждый из которых соединен с одним элементом схемы, обеспечивают довольно большое сопротивление изоляции. Другим решением, требующим, однако, овладения сложной технологией, является изоляция каждого элемента пленкой SiO2.

Резисторы изготавливают следующим образом: в пластину кремния р-типа вводят путем диффузии донорные примеси, что приводит к возникновению n-области, являющейся предохранительным переходом n-p-резистора. Внутри n-области путем дальнейшей диффузии образуется область р-типа, к которой присоединяются алюминиевые выводы. Наружная пленка Si02 обеспечивает герметизацию резистора. Сопротивление у таких резисторов можно получить до 50 кОм с разбросом по номиналам ±10—20%.

В конденсаторах полупроводниковых микросхем в качестве диэлектрика используется SiO2. В пластине кремния р-типа создается n-область, образующая изолирующий n-р-переход, затем сильно легированная примесями n+ область с большим реактивным сопротивлением, являющаяся нижней обкладкой конденсатора. Второй обкладкой является пленка напыленного алюминия (рис.б). При толщине диэлектрика 0,05 мкм (напряжение пробоя 50 В) емкость около 50 нФ/см2, что ограничивает общую емкость до нескольких сотен пикофарад.

Транзисторы полупроводниковых микросхем изготавливают также путем диффузии примесей (рис. е). Качество транзисторов, полученных по такой технологии, довольно высоко и не отличается от качества типовых планарных транзисторов. Подобным образом изготавливают также планарные диоды.

Благодаря небольшим геометрическим размерам отдельных элементов микросхемы (длина несколько десятков микрометров, ширина несколько микрометров) на 1 мм² поверхности пластины можно разместить десятки элементов. Нагрузка элементов ограничивается долями милливатта, соответственно малы напряжения (несколько вольт) и токи.

Полупроводниковые микросхемы помещают в металлические корпуса или заливают пластмассой, например эпоксидной смолой, с соответствующими проволочными или ленточными выводами. Корпуса значительно увеличивают габаритные размеры микросхем. Сравнительно большой разброс параметров полупроводниковых микросхем не препятствует их использованию в бинарных схемах, т. е. схемах, имеющих два рабочих состояния, широко применяющихся в цифровых ЭВМ. Применение полупроводниковых микросхем в цифровых и релейных схемах приводит к уменьшению их габаритов, массы и цены. Полупроводниковые микросхемы аналогового типа, например усилители, менее распространены из-за трудностей выдержать допуски на параметры всех элементов.

Важным преимуществом полупроводниковых микросхем является их высокая надежность по сравнению с традиционными схемами, обеспечиваемая конструкцией, значительным уменьшением количества паяных соединений и т. п.

Аналоговые микросхемы прежде всего нужны для усиления сигнала. Но т.к. обработка информации происходит в основном в цифровом виде, то аналоговый сигнал необходимо преобразовать в цифровой. Для этого используются аналого-цифровые преобразователи - АЦП. Для управления чаще всего используется непрерывный аналоговый сигнал. Для получения из цифрового дискретного сигнала непрерывного аналогового используются цифро-аналоговые преобразователи (ЦАП).

Источники вторичного электропитания электронных устройств. Классификация и параметры выпрямителей. Однополупериодные и двухполупериодные мостовые и со средней точкой, однофазные и трехфазные, управляемые и неуправляемые выпрямители. Схема Ларионова. Умножители напряжения. Схема Латура. Сглаживающие фильтры

Схема выпрямления однофазного тока. Неуправляемая. Однополупериодная.

Достоинства однополупериодной схемы: малое количество выпрямительных диодов, простота схемы, отсутствие сквозных токов.

Недостатки: повышенный уровень пульсации на низкой частоте, сильное подмагничивание сердечника

Применяются в высоковольтных и маломощных схемах (на низкой частоте) и в схемах с бестрансформаторным входом (на частоте 20-100 кГц).

Схема выпрямления однофазного тока. Неуправляемая. Двухполупериодная со средней точкой.

Достоинства: пониженная пульсация на низкой частоте, небольшое количество силовых диодов (2) и меньшие потери мощности на них по сравнению с мостовой схемой.

Недостатки: более сложная конструкция трансформатора, подмагничивание трансформатора, больший расход меди трансформатора (по сравнению с мостовой), присутствуют сквозные токи.

Применение: в мощных низковольтных выпрямителях, в источниках питания с бестрансформаторным входом.

Схема выпрямления однофазного тока. Неуправляемая. Мостовая.

Ток проходит через 1 - VD3 – Rн – VD2 – 2 (2 – VD4 - Rн – VD1 - 1).

Достоинства: пониженный уровень пульсации по сравнению с однополупериодной, упрощённая конструкция трансформатора, нормальный расход меди, отсутствие подмагничивания сердечника.

Недостатки: большое число силовых диодов и повышенный расход мощности на них, присутствуют сквозные токи.

Применение: на низкой частоте 50-400 Гц.

Схема выпрямления однофазного тока. Неуправляемая. Мостовая со средней точкой.

Достоинства: пониженный расход меди, отсутствие подмагничивания сердечника.

Недостаток: отсутствие подмагничивания сердечника.

Схема выпрямления однофазного тока. Управляемая.

В мостовой схеме достаточно заменить 2 диода (но не любых) на тиристоры, т.к. диод и тиристор соединены последовательно и тиристор закрыт, то тока не будет.

Достоинства: простота схемы и отсутствие потерь мощности и напряжения.

Недостатки: повышенный уровень сетевых и радио помех, что требует дополнительного экранирования и фильтраций.

Схема выпрямления однофазного тока. Управляемая с волътодобавкой.

Достоинства: пониженный уровень пульсации и помех.

Недостатки: узкий диапазон регулировки.

Умножители напряжения. Схема Латура.

Схема Латура - схема удвоения напряжения.

Прохождение тока: «+» - VD3 – C1 – «-»

Через VD2, VD4 ток не идёт, они закрыты.

До тех пор, пока лампа выключена, сопротивление газоразрядного промежутка велико, схема работает как схема удвоения напряжения Латура, VD2, VD4 закрыты, напряжение на конденсаторах. После возникновения пробоя, сопротивление лампы резко падает, конденсаторы быстро разряжаются, и схема переходит в режим работы мостового выпрямителя.

Схема умножения напряжения позволяет получить выходное напряжение дольше входного в n раз. Заряжается до амплитудного напряжения.

Недостаток всех умножителей: невысокая мощность и низкий КПД.

Трёхфазный выпрямитель напряжения. Однополупериодная

Первый диод открыт в тот момент времени, когда напряжение, создаваемое I обмоткой, больше других.

Достоинства: пониженный уровень, повышенная частота пульсации, нет перекоса фаз.

Недостатки: подмагничивание сердечника.

Трёхфазный выпрямитель напряжения. Двухполупериодная (схема Ларионова).

Ток будет протекать через обмотки, имеющие max и min потенциал в данный момент времени. Итоговая пульсация будет ещё меньше, а частота будет в 6 раз больше исходной.

Недостатки: большое число диодов, большие потери мощности на них.

Достоинства: ещё большая частота пульсации.

Регулируемый трехфазный выпрямитель.

Вместо диодов ставим тиристоры в полупериодной схеме.

Если закрыты все три тиристора, то схема работает как однополупериодный выпрямитель. Напряжение управления может подаваться на все 3 тиристора одновременно. Откроется лишь тот, у которого напряжение анод - катод имеет положительное значение.

Регулируемый трехфазный выпрямитель с вольтодобавкой.

Стабилизаторы напряжения и тока. Структурная схема стабилизированного источника питания. Параметрические и компенсационные, параллельные и последовательные, регулируемые и нерегулируемые, однополярные и разнополярные стабилизаторы напряжения и тока. Стабилизаторы на ОУ. Защита по току и напряжению. Ключевые повышающие, понижающие и инвертирующие (повышающе-понижающие) стабилизаторы. Функциональные схемы ключевых стабилизаторов и импульсных блоков питания малогабаритных устройств. Принципиальная схема стабилизаторов

Классификация систем электропитания

ПНН (ПНТ) – переключается при нулевых напряжениях (токах)

ШИМ – широтно-импульсная модуляция

Линейный параметрический параллельный

Достоинства: не боится к.з.

Недостаток: низкий кпд.

Применение: маломощные схемы

Линейный параметрический последовательный

Достоинства: высокий кпд.

Недостатки: боится к.з. нагрузки (требует специальных мер по защите от к.з.)

Применение: в схемах, не требующих высокого коэффициента стабилизации.

Линейный компенсационный последовательный

  1. На транзисторах.

VT2 открывается/закрывается таким образом, чтобы поддерживать на выходе напряжение, кот. задаст на базе 5,3В.

Если напряжение на выходе увеличилось, то и напряжение база-эмиттер увеличивается (Uэ=const); это вызывает приоткрывание VT2 и увеличение тока через него, увеличение UR1, а следовательно, уменьшение δUVT1 и UВЫХ.

Изменяя часть подаваемого на базу напряжения с помощью R3, мы изменяем Uвых.

R4 и VT3 –– для защиты от к.з.

При увеличении выходного тока увеличивается UR4. При достижении им 0,6В VT3 открывается, что препятствует увеличению выходного тока, т.к. Uбэ1 не увеличивается.

2. На ОУ

Линейный компенсационный параллельный

Uвых=Uопорн.

Сопротивление транзистора регулируется таким образом, чтобы напряжение на нагрузке оставалось неизменным и равным Uопорн.

Если Uвых станет большеUопорн , то оно усилится ОУ и приоткроет транзистор, вызывая увеличение тока через Rд, а значит напряжение на нем возвращает Uвых к заданному Uопорн .

Ключевой понижающий с ШИМ.

Uвых =0,1….0,9 Uвх

Достоинство ключевых стабилизаторов: кпд= 95–98%.

Недостаток: сложность, высокий уровень высокочастотных электрических и электромагнитных помех, что требует принятия специальных мер для их подавления и экранирования.

Выходное напряжение сравнивается с эталонным, усиленный сигнал ошибки воздействует на ШИМ, кот. управляет длительностью замкнутого и разомкнутого состояния ключа. Когда ключ замкнут, ток протекает через дроссель в нагрузку и выходной конденсатор. По мере нарастания выходного напряжения до значения эталонного ключ размыкается. В этот момент запасенная в дроссель энергия реверсирует полярность напряжения на нем. Ток протекает через диод в нагрузку, а напряжение на выходе поддерживается конденсатором. Когда вся энергия запасенная в дросселе использована, разряжается конденсатор. Выходное напряжение уменьшается и процесс продолжается таким образом, что выходное напряжение поддерживается на уровне близком к эталонному.

Ключевой повышающий с ШИМ.

Когда ключ замкнут, ток протекает через дроссель, в котором запасается энергия. Когда ключ размыкается, энергия запасенная в дросселе уменьшается и изменяет полярность напряжения на нем таким образом, что напряжение на дросселе складывается с входным. Таким образом, напряжение на дросселе и входное напряжение заряжают конденсатор до напряжения больше, чем входное.

Ключевой инвертирующий с ШИМ.

Когда ключ замкнут, дроссель запасает энергию. Когда ключ разомкнут, запасенная энергия, спадая, вызывает изменение полярности напряжения на дросселе, обеспечивая протекание тока через нагрузку и конденсатор. При этом полярность выходного напряжения оказывается обратной полярности входного.

Функциональная схема ключевого стабилизатора напряжения

Ключевые стабилизаторы бывают с самовозбуждением и, чаще всего, с независимым возбуждением. Выходное напряжение сравнивается с опорным и усиленное напряжение ошибки используется для получения выходных импульсов ШИМ, которые управляют ключом стабилизатора таким образом, чтобы поддерживать вых. напряжение на заданном уровне. Импульсы ШИМ могут быть с фиксированной длительностью замкнутого и изменяющейся длительностью разомкнутого состояния, с изменяющейся длительностью замкнутого и разомкнутого состояний, но с фиксированной частотой.

Принципиальная схема ключевого стабилизатора с защитой от к.з.

VT1 – предварительный усилитель,

VT2 – ключ понижающего преобразователя (стабилизатора).

VT5 приоткрывается при Uвых > 9,7 В (UVD1+UБЭVT5=9.1+0.6=9.7В) и изменяет пороговое напряжение на выводе 5 ДА, шунтируя два нижних резистора внутреннего делителя напряжения ДА. Этим самым мы изменяем длительность импульса на выходе ДА, а следовательно длительность открытого состояния ключа. R7, VT3 и VT4 служат для защиты выхода от к.з., когда UR7 становится ≥ 0,6В (Iн ≥ 120mA) VT3, а затем и VT4 открываются, делая U4 ДА меньше 1В, что приводит к аварийному останову микросхемы.

Усилители постоянного тока (УПТ). УПТ с непосредственной связью между каскадами и типа модуляция-демодуляция (МДМ). Способы модуляции. Дифференциальные усилительные каскады (ДУ) на БПТ и ПТ. Способы компенсации смещения и дрейфа. Сравнительный анализ и области применения. Работа ДУ в режиме синфазного и противофазного сигнала и при использовании динамической нагрузки

УПТ предназначены для усиления сигналов медленно изменяющихся во времени. Характерная особенность - отсутствие конденсаторной связи между генератором сигнала, усилительным каскадом и нагрузкой.

Самопроизвольное изменение выходного напряжения УПТ при неизменном напряжении входного сигнала называется дрейфом усилителя.

Причины возникновения дрейфа: нестабильность напряжения питания, температурная и временная нестабильность параметров диодов, резисторов, транзисторов

Напряжение дрейфа определяется при закороченном входе:

eдр = ΔUвых др u при Uвх = 0 (режим КЗ). Величина Uвх др определяет диапазон возможного изменения входного напряжения усилителя при котором напряжение дрейфа составляет незначительную часть полезного выходного сигнала. Смещение - максимальное значение выходного напряжения при Uвх = 0

УПТ с непосредственно связью между каскадами.

Непосредственная связь между каскадами обуславливает особенности расчета их режима покоя (напряжения и токов при ). Параметры режима покоя каскада рассчитываются с учетом элементов, относящихся к выходной цепи предыдущего каскада и входной цепи последующего каскада. В УПТ выводы коллектора и базы транзисторов соседних каскадов соединены непосредственно. При этих условиях резисторы каждого последующего каскада, осуществляющие внутрикаскадные ООС по постоянному току, предназначены также для создания необходимого напряжения в режиме покоя.

Во входную цепь УПТ последователь с источником входного сигнала включен источник входного компенсирующего напряжения Его вводят для того, чтобы при напряжение соответствовало требуемому значению напряжения в режиме покоя и ток через источник был равен нулю. С этой целью

Коэффициент усиления рассматриваемой схемы а коэффициенты каскадов определяются по формулам

Отсюда видно, что коэффициенты усиления каскадов обратно пропорциональны сопротивлениям резисторов эмиттерных цепей.

Сопротивление рассчитывается по режиму температурной стабилизации первого каскада, имеет величину от сотен Ом до Ком. Так как последующих каскадов используются также для задания режима покоя , то это вызывает необходимость повышения напряжения в каждом последующем каскаде с целью получения требуемых значений . Однако, это приводит к снижению коэффициента усиления каскада и всего УПТ в целом.

Способ построения УПТ на основе непосредственной связи простейших усилительных каскадов может быть использован для получения сравнительно невысокого коэффициента усиления (порядка нескольких десятков) при относительно большом усиливаемом сигнале

При необходимости получения больших коэффициентов усиления (сотни и тысячи) этот способ построения УПТ невозможен ввиду сильного проявления дрейфа усилителя, компенсировать который подбором элементов схемы невозможно в условия серийного производства и эксплуатации аппаратуры. Радикальным средством уменьшения дрейфа нуля является применение дифференциальных каскадов усиления.

Существует несколько разновидностей усилителей ПТ. Простейшие - последовательное соединение усилительных каскадов.

R1

Rк1

Rк2

R3

R4

Rэ2

Rэ1

R2

Uкомп вх

Другие - МДМ (модулятор - демодулятор) Демодулятор из переменного делает постоянный сигнал. Недостатки: ограниченный частотный диапазон для механических модуляторов, повышенные шумы за счёт модуляции, искажение сигнала. Третьи - операционные усилители.

Дифференциальный усилитель - симметричный усилитель постоянного напряжения с 2-мя входами и 2-мя выходами. Дифференциальный усилительный каскад выполняется по принципу сбалансированного моста, два плеча которого образованы резисторами , а два других - транзисторами . Выходное напряжение снимается между коллекторами транзисторов.

На транзисторе собрана схема источника стабильного тока , определяющего сумму токов транзисторов . Транзистор предназначен для повышения стабильности тока в зависимости от изменения температуры.

Если пренебречь током и принять , то можно записать:

Схема дифференциального каскада требует применения близких по параметрам транзисторов и равенства сопротивлений , что легко достигается при интегральном исполнении. Благодаря этому при входных сигналах, равных нулю, достигается баланс моста. Напряжения на коллекторах обоих транзисторов равны, и выходное напряжение, снимаемое с диагонали, .

В режиме покоя , т.е. на входе ДУ подано напряжение общей точки. Ток делится поровну между транзисторами, т.е. .

Д ля управления ДУ дифференциального каскада используется отрицательная обратная связь по току. Для этого в цепь каждого транзистора включается эмиттерный резистор. Коэффициент усиления по напряжению приблизительно определяется соотношением . Если применить 2 источника стабильного тока, то ООС по току можно обеспечить с помощью одного резистора. При отсутствии входного сигнала по нему не будет протекать ток. В связи с этим с его помощью можно варьировать коэффициент усиления без изменения величины входного потенциала при отсутствии входного сигнала.

Из-за разброса параметров полупроводниковых элементов, входящих в схему при равных коллекторных токах напряжения база-эмиттер не совпадают, поэтому разность выходных напряжений не в точности равна 0.

Напряжение разбаланса представляет собой разность входных напряжений, которую необходимо приложить для того, чтобы выполнялось равенство .

Имеются различные возможности приведения к нулю напряжения разбаланса ДУ.

Если необходим только один вход, то к другому можно приложить постоянное напряжение и тем самым скомпенсировать напряжение разбаланса. Для этой цели служит потенциометр Для удобства установки малых напряжений дополнительно подключают необходимый делитель напряжения

Если требуются 2 входа, то различия между напряжениями эмиттер-база устраняют с помощью эмиттерных сопротивлений

Третья возможность выравнивания напряжения база-эмиттер состоит в том, чтобы обеспечить различные значения коллекторного тока. Для этого служит потенциометр Этим способом можно отрегулировать напряжение разбаланса до нуля.

Работа дифференциального усилителя в режиме усиления.

Пусть на вход подается входной сигнал положительной полярности. Под его воздействием через входные цепи обоих транзисторов будет протекать входной ток , ток базы будет возрастать, а ток базы - убывать. При этом токи возрастают, а токи убывают. Изменение токов обоих транзисторов происходит на одну и ту же величину, поскольку сумма токов остается неизменной:

Изменение коллекторных токов вызывает изменение потенциальной диаграммы каскада. Напряжение убывает, что вызывает приращение напряжения противоположного по знаку напряжению

Напряжение возрастает, что создает соответствующее приращение напряжения того же знака, что и напряжение входного сигнала.

Следовательно, при таком способе передачи входного сигнала является инвертирующим, а - неинвертирующим. Сигнал, снимаемый с обоих коллекторов, называется дифференциальным:

.

Изменение выходных напряжений под действием сигнала на входе прекращаются, когда под влиянием входного тока ток базы одного из транзисторов (в рассмотренном случае ) становится равным нулю, а ток протекает только через один из транзисторов ( ). Выходные напряжения каскада при этом составляют:

Определим коэффициенты усиления по напряжению дифференциального каскада:

- входное сопротивление транзистора.

Входной ток создает приращение коллекторных токов и напряжение на коллекторах

После преобразования 2-х уравнений получаем:

Коэффициент усиления каскада по дифференциальному выходу при :

Соотношения (1) и (2) используют для оценки коэффициентов усиления дифференциального каскада. Коэффициент усиления по выходам и при близки к для одиночного каскада с ОЭ. Коэффициент усиления по дифференциальному выходу близок к значению для того же каскада. При подаче 2-х входных сигналов неодинаковой полярности дифференциальное выходное напряжение

Входное сопротивление дифференциального каскада равно сумме входных сопротивлений транзисторов Эта величина определяет сопротивление нагрузки для источника входного сигнала, поэтому сопротивление целесообразно иметь возможно большим. может достигать значения в десятки и сотни Ком.

Существенное повышение (до десятков МОм) входного сопротивления даст выполнение дифференциального каскада на полевых транзисторах. По принципу действия эта схема не отличатся от схемы на БПТ.

Работа дифференциального усилителя в режиме синфазного сигнала.

Режим работы ДУ при подключении ко входу 2-х напряжений одинаковой полярности, т.е. 2-х синфазных сигналов. В этом случае ДУ решает задачу сравнения значений напряжений входных сигналов или увеличения их разности.

При наличии синфазных сигналов дифференциальное выходное напряжение пропорционально разности

При подаче на входы 2-х сигналов одинаковой полярности необходимо учитывать возможность появления на выходах так называемой выходной синфазной ошибки. Она обусловлена наличием на обоих входах одинакового постоянного напряжения (постоянной составляющей), равного наименьшему из напряжений

Если, например, то напряжение можно рассматривать как синфазное напряжение , приложенное одновременно к обоим входам, а разность - как дифференциальное входное напряжение между входами. При появление синфазной ошибки можно показать на следующем примере.

В дифференциальном каскаде с идеальным источником тока при и общем напряжении напряжение баланса не должно изменяться. Однако, наличие синфазного напряжения приводит к повышения напряжения выходного транзистора , используемого в качестве источника стабильного тока, что при неидеальности источника вызывает некоторое увеличение тока . Это обуславливает положительные приращения токов эмиттера и коллектора транзисторов и убывание напряжения баланса

При подаче синфазной ЭДС отрицательной полярности уровень баланса возрастает на . При напряжения на коллекторах получают приращения относительно напряжения Иными словами, проявляется на выходах как величина синфазной ошибки при усилении.

При одинаковых параметрах транзисторов наличие синфазной ЭДС не вызывает появления синфазной ошибки на дифференциальном выходе каскада. Учет синфазных ошибок усиления важен в многокаскадных УПТ с дифференциальным каскадом на входе.

Синфазную ошибку усиления оценивают коэффициентом синфазной передачи каскада:

. Обычно .

Качество дифференциального каскада характеризуется отношением показывающим способность каскада различать малый дифференциальный сигнал на фоне большого синфазного напряжения.

Работа дифференциального каскада с динамической нагрузкой.

При интегральном исполнении дифференциальных усилительных каскадов вместо резисторов широко используют транзисторы, выполняющие функцию динамических нагрузок каскада. Подобные схемы позволяют обеспечить существенно большие значения коэффициента усиления по сравнению с ранее рассмотренными схемами, имеющими резистивные нагрузки, что важно при создании многокаскадных УПТ.

Транзисторы p-n-p-типа, выполняющие функцию динамических нагрузок каскада. Близки по параметрам. При этом транзистор используется в качестве диода. Ток транзистора , протекающий также через транзистор , создает напряжение определяющее входное напряжение Поскольку транзисторы близки по параметрам, ток будет близок к . В этом главная особенность рассматриваемой схемы. Выходной дифференциальный сигнал снимается с коллектора транзистора .

При схема находится в режиме покоя. Токи . Ток протекает через транзистор

Пусть источник входного сигнала имеет полярность, показанную на рисунке. Под воздействием сигнала возрастает ток и убывает ток . Изменение базовых токов вызывает изменение коллекторных токов:

Так как , то . При этом ток нагрузки

Напряжения на выходе Подача входного напряжения противоположной полярности вызывает изменения направления токов и полярности напряжения

Коэффициент усиления по напряжению:

При

В многокаскадных УПТ является входным сопротивлением последующего каскада, величина которого равна нескольким сотням Ком. Создание такой же величины сопротивления в схемотехническом исполнении затруднительно. Поэтому дифференциальные каскады с имеют несколько десятков, а с динамической нагрузкой и - несколько сотен.

Смещение с помощью источника тока. Усиление синфазного сигнала в дифференциальном усилителе можно зна­чительно уменьшить, если резистор заменить источником тока. При этом действующее значение сопротивления станет очень большим, а усиление син­фазного сигнала будет ослаблено почти до нуля. Представим себе, что на входе действует синфазный сигнал; источник тока в эмиттерной цепи поддерживает полный эмиттерный ток постоянным, и он (в силу симметрии схемы) равномерно распределяется между двумя коллекторными цепями. Следовательно, сигнал на выходе схемы не изменяется. Величина КОСС определяется отношением 100000:1 (100 дБ). Диапазон входного син­фазного сигнала ограничен значе­ниями — 12 В и +7 В; нижний предел определяется рабочим диа­пазоном источника тока в эмиттер­ной цепи, а верхний — коллектор­ным напряжением покоя.

Применения дифференциальных схем в усилителях пос­тоянного тока с однополюсным выходом.

Дифференциальный усилитель может прекрасно работать как усилитель постоянного тока даже с несимметричными (односторонними) входными сигналами. Для этого нужно один из его входов заземлить, а на другой подать сигнал.

Дифференциальная схема обеспечивает компенсацию температурного дрейфа, и, даже когда один вход заземлен, транзистор выполняет некоторые функции: при изменении температуры напряже­ния изменяются на одинаковую величину, при этом не происхо­дит никаких изменений на выходе и не нарушается ба­лансировка схемы. Это зна­чит, что изменение напряже­ния не усиливается с коэффициентом Kдиф (его уси­ление определяется коэффи­циентом Ксинф, который мож­но уменьшить почти до нуля). Кроме того, взаимная компен­сация напряжений при­водит к тому, что на входе не нужно учитывать падения на­пряжения величиной 0,6 В. Качество такого усилителя постоянного тока ухудшается только из-за несогласованно­сти напряжений или их температурных коэффициентов. Про­мышленность выпускает транзисторные пары и интегральные диф­ференциальные усилители с очень высокой степенью согласования.

Использование токового зеркала в качестве активной нагрузки.

Использование токового зеркала в качестве динамической характеристики ДУ позволяет получить большие коэффициенты усиления и нейтрализует эффект Миллера.

Т ранзисторы и образуют дифференциальную пару с источником тока в эмиттерной цепи. Транзисторы и , образующие токовое зеркало, выступают в качестве коллекторной нагрузки. Тем самым обеспечивается высокое значение сопротивления коллекторной нагруз­ки, благодаря этому коэффициент усиления по напряжению достигает 5000 и выше при условии, что нагрузка на выходе усилителя отсутст­вует. Такой усилитель используют, как правило, только в схемах, охваченных петлей обратной связи, или в компараторах (их мы рас­смотрим в следующем разделе). Запомните, что нагрузка для такого усилителя обязательно должна иметь большой импеданс, иначе уси­ление будет существенно ослаблено.

Дифференциальные усилители как схемы расщепления фазы.

На коллекторах симметричного дифференциального усилителя возникают сигналы, одинаковые по амплитуде, но с противоположными фазами. Если снимать выходные сигналы с двух коллекторов, то получим схему расщепления фазы. Конечно, можно использовать диф­ференциальный усилитель с дифференциальными входами и выходами. Дифференциальный выходной сигнал можно затем использовать для управления еще одним дифференциальным усилительным каскадом, величина КОСС для всей схемы при этом значительно увеличивается.

Дифференциальные усилители как компараторы. Благо­даря высокому коэффициенту усиления и стабильным характеристикам дифференциальный усилитель является основной составной частью ком­паратора — схемы, которая сравнивает входные сигналы и оценивает, какой из них больше. Компараторы используют в самых различных областях: для включения освещения и отопления, для получения прямоугольных сигналов из треугольных, для сравнения уровня сигнала с пороговым значением, в усилителях класса D и при импульсно-кодовой модуляции, для переключения источников питания и т. д. Основная идея при построении компаратора заключается в том, что транзистор должен включаться или выключаться в зависимости от уровней входных сигналов. Область линейного усиления не рассмат­ривается — работа схемы основывается на том, что один из двух вход­ных транзисторов в любой момент находится в режиме отсечки.

Методы устранения расбаланса (смещения)

  1. метод - коллекторный (основной).

  2. метод - изменением R1, позволяет закрыть транзисторы, если они открыты.

  3. метод - второй вход не используется, на базу подаётся напряжение смещения от источника питания (выгоден, когда один из входов свободен)

При подаче на оба входа одинакового синфазного сигнала напряжение между коллекторами не изменяется.

Эффект Миллера.

Емкость ограничивает скорость изменения напряжения в схеме, так как любая схема имеет собственные конечные выходные импеданс и ток. Когда емкость перезаряжается от источника с конечным сопротивлением, ее заряд происходит по экспотенциальному закону с постоянной времени RC; если же емкость заряжает идеальный источник тока, то снимаемый с нее сигнал будет изменяться по линейному закону. Схема на рисунке иллюстрирует, как проявляются емкости переходов транзистора. Выходная емкость образует RC-цепь с выходным сопротивлением . Усилитель обладает некоторым коэффициентом усиления по напряжению , следовательно, небольшой сигнал на входе порождает на коллекторе сигнал, в раз превышающий входной (и инвертированный по отношению к входному). Из этого следует, что для источника сигнала емкость в раз больше, чем при подключении между базой и землей. Эффективное увеличение емкости и называют эффектом Миллера.

Существует несколько методов борьбы с эффектом Миллера. Например, он может быть полностью устранен, если использовать усилительный каскад с общей базой. Импеданс источника можно уменьшить, если подавать сигнал на каскад с заземленным эмиттером через эмиттерный повторитель. На рисунке показаны еще 2 возможности. В дифференциальном усилителе (без резистора в коллекторной цепи ) эффект Миллера не наблюдается; эту схему можно рассматривать как эмиттерный повторитель, подключенный к каскаду с заземленной базой. На второй схеме показано каскадное включение транзисторов. - это усилитель с заземленным эмиттером, резистор является общим коллекторным резистором. Транзистор включен в коллекторную цепь для того, чтобы предотвратить изменение сигнала в коллекторе (и тем самым устранить эффект Миллера) при протекании коллекторного тока через резистор нагрузки. Напряжение - это фиксированное напряжение смещения, обычно оно на несколько вольт превышает напряжение на эмиттере и поддерживает коллектор в активной области.

Интегральные операционные усилители (ОУ) и их применение. Разновидность и обозначение ОУ. Типы входных каскадов. Упрощенная схема ОУ. Назначение каскадов. Коэффициент ослабления синфазного сигнала и влияние напряжения сигнала. Амплитудно-частотная и фазо-частотная характеристики, основные параметры ОУ. Способы уменьшения напряжений сдвига и дрейфа. Граничная частота усиления и максимальная скорость нарастания выходного сигнала

Операционный усилитель (ОУ)- усилители с гальваническими (безконденсаторными) связями, которые имеют дифференциальный вход, один выход и работают при наличии глубокой ОС, которая практически полностью определяет параметры и характеристики устройств, собранных на них.

Обозначение:

«-» - инвертирующий вход

«+» - неинвертирующий вход

Полное обозначение: В соответствии с ГОСТ 2759-82 обозначение элементов аналоговой техники выполняется на основе прямоугольника.

Не во всех ОУ есть выводы земли, если он не нужен, то его не рисуют.

Fc – выводы для подключения цепей частотной коррекции.

Nc – выводы для подключения цепей коррекции начального смещения.

Разновидность ОУ.

К140УД1, УД2, УД5, УД7, УД9, УД10, УД11, УД12, УД13, УД14, УД17, УД18, УД20;

К153УД1, УД2, УД3, УД4, УД5, УД6;

К154УД1, УД2, УД3, УД4;

К157УД1, УД2;

554УД1, УД2;

551УД1, УД2;

553УД1;

574УД1, УД2, УД3;

710УД1;

740УД1, УД3, УД4, УД5;

К1401УД1, УД2;

К1407УД1, УД2, УД3, УД4;

К1408УД1;

К1409УД1.

Операционный усилитель состоит из 3-х основных каскадов: 1) дифференциальный каскад выполняет роль ослабления синфазного сигнала; 2) каскад с общим эмиттером с источником тока в коллекторной цепи - основной усилительный каскад напряжения Ku=103..105; 3) двухтактный эмиттерный повторитель в режиме класса В – предназначен для согласования высокого входного сопротивления источника тока с невысоким сопротивлением нагрузки, кроме этого обеспечивает усиление мощности выходного сигнала.. Кроме того, ОУ может содержать схему защиты выхода от КЗ, схему защиты входа от перенапряжения.

По типам входных каскадов ОУ делятся:

- на БПТ - широкий диапазон применения, хорошая балансировка, высокое входное сопротивление, больший сдвиг и дрейф;

- на ПТ – высокое входное сопротивление, большой сдвиг и дрейф нуля по сравнению с БПТ;

- на БПТ со сверхвысоким усилением (транзисторы супер β) - обеспечивают входное сопротивление, сопоставимое с каскадом на ПТ, величина сдвигов, и дрейфов как у обычных БПТ;

- с гальванической изоляцией входа от выхода - используется модуляция или оптические методы, применяется в медицине и технике высоких напряжений;

- на варикапе - имеют очень малый входной ток смещения, используются для усиления тока на фотоумножителях.

Характеристики ОУ:

  • входное напряжение

  • max диф. входное напряжение

  • max синфазное входное напряжение

  • входной ток смещения

  • max выходные U и I

  • параметры смещения

- дрейф (температурный и временный)

- частотные

-динамические

- скорость нарастания выходного напряжения

В ажнейшими характеристиками ОУ являются амплитудные (передаточные) Uвых=f(Uвх) и амплитудно-частотные (АЧХ) кU(f). Амплитудно-частотная характеристика имеет вид АЧХ усилителя постоянного тока за исключением специальных частотнозависимых устройств (избирательный усилитель и др.). Передаточные характеристики имеют линейный участок, для которого кU= =const, и нелинейный - кUкU. При реализации конкретных устройств используют линейные и нелинейные участки. Рассмотрим примеры построения устройств на базе ОУ.

Если необходима большая амплитуда на max частоте выходного неискажённого сигнала либо форма сигнала не синусоидальна, а импульсная с большой крутизной фронтов, необходимо применять ОУ с высокой скоростью нарастания напряжения (это осуществляется опережающей внутренней или внешней коррекцией ОУ, что приводит к неустойчивой работе при малых коэффициентах усиления). На некоторой частоте начинает влиять паразитная ёмкость первого усилительного каскада, в дополнение к влиянию ёмкости второго усилительного каскада, который начинает сказываться с частотой несколько сотен Гц.

Частотная характеристика:

Полоса пропускания 1МГц означает, что

кu·f = const.

fгр = 106Гц

Параметры ОУ:

  • входные

  • выходные

  • усилительные

  • энергетические

  • дрейфовые

  • частотные

  • скоростные

Входными параметрами ОУ являются входное сопротивление, входные токи смещения, разность и дрейф входных токов смещения, максимальные, входные и дифференциальные напряжения. Наличие входных токов смещения обуславливается конечным значением входного сопротивления дифференциального каскада, а их разность - разбросом параметров транзисторов. Входное сопротивление ОУ рассматривается по отношению к входному сигналу. Для идеального ОУ , а на практике составляет от 300КОм до 10Мом, если дифференциальный каскад выполнен на БПТ, а если на ПТ, то Мом.

Входное напряжение, подаваемое на входы ОУ, ограничено максимальным дифференциальным входным напряжением, поэтому для исключения повреждения транзисторов дифференциального каскада между входами ОУ включают встречно-параллельно два каскада или стабилитрона.

Выходными параметрами ОУ являются выходное сопротивление, максимальное выходное напряжение и ток. ОУ должен обладать малым выходным сопротивлением для обеспечения высоких значений напряжения на выходе при малых сопротивлениях нагрузки. Диапазон реальных значений выходного сопротивления лежит в пределах от единиц до нескольких сотен Ом. Минимальное значение сопротивления нагрузки приводится в паспортных данных.

Максимальное выходное напряжение близко к напряжению питания .

Максимальный выходной ток ограничивается допустимым коллекторным током от обоих источников питания и соответственно суммарной потребляемой мощностью.

Частотные параметры определяют по АЧХ ОУ, которая имеет спадающий характер в области высокой частоты, начиная от частоты среза. Причиной этого является частотная зависимость параметров транзисторов и паразитных емкостей схемы ОУ. По инвертирующему входу ОУ обычно охватывается ООС. В области высоких частот это приводит к дополнительному (сверх 180˚) фазовому сдвигу, который в пределе может достигать значения в 360˚. Т.о возникает ПОС, что приводит к самовозбуждению схемы. Для устранения самовозбуждения в ОУ вводят внешние корректирующие RC-цепи и места их подключения к микросхеме указываются заводом изготовителем.

Динамическими параметрами ОУ являются скорость нарастания выходного напряжения и время установления выходного напряжения. Они определяются по воздействию скачка напряжения на входе на участке изменения выходного напряжения от 0,1 до .

Энергетические параметры ОУ оцениваются максимальными потребляемыми токами от обоих источников питания и соответственно суммарной потребляемой мощностью.

Примеры построения аналоговых схем на ОУ (инвертирующие и неинвертирующие усилители, повторители, сумматоры, вычитатели, интеграторы, дифференциаторы, фильтры высоких и низких частот, полосовые и режекторные фильтры, гираторы, преобразователи ток-напряжение, точные выпрямители, нуль-органы, электронные реле, выпрямители и др.). Применение ОУ в робототехнике и системах управления

Инвертирующий усилитель:

Е сли в цепи обратной связи использовать простейший делитель напряжения, то получится базовая схема инвертирующего усилителя.

Потенциал на инвертирующем входе U- =0. Так как ОУ находится в линейном режиме, тогда U- - U+ = Uвых0 . Например, при Uвых =5 В, К0 = 2·105 получаем UА =25мкВ. Такое малое напряжение (оно сравнимо с термо-э.д.с. при ∆Т=1ºС) даже невозможно измерить обычным цифровым вольтметром. Отсюда следует, что потенциалы на выходах ОУ можно с хорошей точностью считать равными. Если один из входов ОУ заземлить, на втором входе будет также поддерживаться нулевой потенциал, хотя напрямую входы ОУ гальванически не связаны. Этот эффект называется мнимым заземлением. Таким образом, из U+ = 0 следует U-=0, Uвх = UR5 (падение напряжения на R5); Uвых = UR19 (падение напряжения на R19). Поскольку входной ток ОУ очень мал, им можно пренебречь, тогда получим I5 = Uвх/R5= -Uвых/R19. Это означает, что для инвертирующего усилителя Кu = Uвых/Uвх = -R19/R5.

Коэффициент усиления

.

Неинвертирующий усилитель:

Так как U+U-, то Uвх = U-= UR8 (падение напряжения на R8); Uвых = UR8 +UR20 (падение напряжения на R20 и R8). Поскольку входной ток ОУ очень мал, им можно пренебречь, тогда получим Ioc = Uвх/R8= Uвых/(R20+R8). Это означает, что для неинвертирующего усилителя Кu = Uвых/Uвх = 1+R20/R8.

Интегратор реализует операцию

,

где =R1Cо.с - постоянная времени.

Может служить фильтром НЧ первого порядка

Дифференциатор: выполняет операцию

.

Д ля интегратора и дифференциатора на инвертирующий вход подаются прямоугольные импульсы с выхода симметричного мультивибратора. На рисунке, а приведен электрический аналог и на рисунке,б временные диаграммы, поясняющие принцип дифференцирования и интегрирования в электрических и электронных цепях.

Uвых = -IосRос

Iос = C·dUс/dt

Uс = Uвх

Uвых = -R осC·dUвх/dt

Используется для выделения переднего и заднего фронтов сигнала, а так же в качестве звена ФВЧ первого порядка.

Инвертирующий и неинвертирующий сумматоры:

Действие этой схемы в точности соответствует ее названию. Инвертирующий сумматор формирует алгебраическую сумму нескольких напряжений и меняет ее знак на обратный.

Если отдельным входным напряжениям надо придать раз­личные веса, то используется схема суммирования с масштаб­ными коэффициентами. Используется для суммирования сигналов, для цифро-аналогового преобразователя. В сумматоре отсутствует взаимное влияние источников сигналов.

Для инвертирующего сумматора выходное напряжение определяется по формуле

.

При равенстве входных сопротивлений R1=R2=R

Uвых=- (Uвх.1+Uвх.2+...+Uвх.n) - для инвертирующего сумматора;

- для неинвертирующего сумматора.

В схеме сумматоров переменным параметром является сопротивление обратной связи Rо.с, которое и определяет коэффициент усиления. Формулы приведены для постоянных величин (числовой сумматор) Uвх.1, Uвх.2 и т.д.

Вычитатель:

У словия, выполнение которых необходимо для правильной работы этой схемы сводятся к тому, чтобы сумма коэффициентов усиления инвертирующей части схемы была рав­на сумме коэффициентов усиления ее неинвертирующей части. Другими словами, инвертирующий и неинвертирующий коэф­фициенты усиления должны быть сбалансированы.

Для схемы, представленной на рисунке, выходное напряжение пропорционально разности напряжений на входах Uвх1 и Uвх2.

. При R9=R11=R10=R21, получаем

.

Используются в измерительных дифференциальных схемах.