
- •Физическая химия
- •Предмет физической химии. Возникновение и развитие
- •Химическая термодинамика Основные понятия и определения
- •Классификация термодинамических систем:
- •Идеальные газы. Уравнения состояния газов
- •Внутренняя энергия, теплота, работа
- •Первый закон термодинамики
- •Первый закон термодинамики в изобарных, изохорных, изотермических и адиабатических условиях для идеальных газовых систем.
- •Закон Гесса. Следствия из закона Гесса
- •Стандартные тепловые эффекты
- •Первое следствие из закона Гесса
- •Второе следствие из закона Гесса
- •Уравнение Кирхгофа. Зависимость теплового эффекта реакции от температуры
- •Второй закон термодинамики Понятие об энтропии. Статистическая термодинамика и физический смысл энтропии.
- •Классическое введение энтропии как термодинамической функции
- •Изменение энтропии как критерий самопроизвольного протекания процесса в изолированной системе.
- •Абсолютное значение энтропии. Постулат Планка. (Третий закон термодинамики).
- •Фундаментальное уравнение Гиббса. Термодинамические потенциалы
- •Изменение энергии Гиббса в химических реакциях
- •Химический потенциал.
- •Понятие о фазовых равновесиях
- •Правило фаз Гиббса
- •Однокомпонентные системы
- •Фазовая диаграмма воды
- •Фазовая диаграмма серы
- •Уравнение Клаузиуса – Клапейрона
- •Энтропия испарения
- •Химическое равновесие
- •Закон действия масс. Константы равновесия
- •Изотерма химической реакции (Уравнение Вант-Гоффа).
- •Зависимость константы равновесия от температуры. Изобара и изохора химической реакции
- •Термодинамика растворов
- •Образование растворов. Растворимость
- •Растворимость газов в газах
- •Растворимость газов в жидкостях
- •Взаимная растворимость жидкостей
- •Растворимость твердых веществ в жидкостях
- •Связь между составом жидкого раствора и пара. Законы Коновалова
- •Растворы неэлектролитов Давление насыщенного пара разбавленных растворов. Закон Рауля.
- •Давление пара идеальных и реальных растворов. Отклонения от закона Рауля
- •Температура кристаллизации разбавленных растворов
- •Температура кипения разбавленных растворов
- •Осмотическое давление в разбавленных растворах
- •Понятие активности растворенного вещества
- •Коллигативные свойства растворов
- •Растворы электролитов Теория электролитической диссоциации. Степень диссоциации
- •Слабые электролиты. Константа диссоциации
- •Сильные электролиты
- •Электропроводность растворов электролитов
- •Электрохимические процессы Электрические потенциалы на фазовых границах
- •Гальванический элемент. Эдс гальванического элемента
- •Электродный потенциал. Уравнение Нернста
- •Классификация электродов
- •Электроды первого рода
- •Электроды второго рода
- •Электроды сравнения
- •Индикаторные электроды
- •Окислительно-восстановительные электроды
- •Кинетика химических реакций
- •Скорость химической реакции
- •Основной постулат химической кинетики (закон действия масс в химической кинетике)
- •Реакции нулевого порядка
- •Реакции первого порядка
- •Реакции первого порядка
- •Реакции второго порядка
- •Молекулярность элементарных реакций
- •Методы определения порядка реакции
- •Сложные реакции и их классификация
- •Последовательные реакции
- •Параллельные реакции
- •Сопряженные реакции
- •Цепные реакции
- •Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
- •Фотохимические реакции
- •1. Возбуждение частиц (переход молекул вещества в возбужденное состояние):
- •2. Ионизация частиц за счет отрыва электронов:
- •3. Диссоциация молекул с образованием свободных радикалов (гомолитическая) либо ионов (гетеролитическая):
- •Катализ
- •Ферментативные реакции. Уравнение Михаэлиса
- •Коллоидные системы Основные понятия
- •Получение дисперсных систем
- •Молекулярно кинетические свойства дисперсных систем
- •Оптические свойства коллоидных систем
- •Молекулярные взаимодействия и особые свойства поверхности раздела фаз. Поверхностное натяжение
- •Адсорбция. Уравнение Гиббса
- •Адсорбция на границе твердое тело – газ
- •Адсорбция из растворов. Поверхностно-активные вещества (пав)
- •Мицеллообразование
- •Двойной электрический слой и электрокинетические явления
Понятие активности растворенного вещества
Если концентрация растворенного вещества не превышает 0.1 моль/л, то раствор неэлектролита обычно считают разбавленным. В таких растворах взаимодействие между молекулами растворителя существенно преобладает над взаимодействием между молекулами растворителя и растворенного вещества, поэтому последним обычно можно пренебречь. В случае более концентрированных растворов такое приближение неправомерно. Для формального учета взаимодействия частиц растворителя и растворенного вещества, а также частиц растворенного вещества между собой, вводится эмпирическая величина, заменяющая концентрацию – активность (эффективная концентрация) “a”, связанная с концентрацией C через коэффициент активности f’. Этот коэффициент является мерой отклонения свойств реального раствора от идеального:
a = f’·C
Как правило, коэффициент активности меньше единицы (при малых концентрациях считают f = 1 и а = С). Необходимо отметить, что активность компонента не прямо пропорциональна его концентрации – коэффициент активности уменьшается с увеличением концентрации.
Коллигативные свойства растворов
Некоторые свойства растворов зависят только от концентрации растворенных частиц и не зависят от их природы. Такие свойства раствора носят название коллигативных. При этом даже не важно, в виде каких частиц находится растворенное вещество в растворе – в виде молекул или ионов.
К коллигативным свойствам относят:
1) понижение давления пара;
2) повышение температуры кипения - эбулиоскопия;
3) понижение температуры замерзания - криоскопия;
4) осмотическое давление.
Эти свойства описываются соответственно уравнениями (54), (55), (56), (57), приведенными в этой главе.
В данных уравнениях предполагалось, что молекулы не распадаются в растворах на ионы. В случае же электролитов необходимо учитывать увеличение количества частиц в растворе, происходящее в результате электролитической диссоциации. Для этого в уравнениях используется изотонический коэффициент (i), который показывает, на сколько частиц распадается молекула в результате диссоциации. Так, если молекула распадается на 2 иона, например KCl, то i=2. Если молекула распадается на 3 иона, например K2SO4, то i=3. Этот коэффициент может быть дробным в случае неполной диссоциации. Для неэлектролитов i=1.
Таким образом, в общем виде для электролитов и неэлектролитов уравнения коллигативных свойств растворов запишутся следующим образом:
(58)
(59)
(60)
(61)
Растворы электролитов Теория электролитической диссоциации. Степень диссоциации
Электролиты – вещества, расплавы или растворы которых проводит электрический ток вследствие диссоциации на ионы.
Для объяснения особенностей свойств растворов электролитов С.Аррениус предложил теорию электролитической диссоциации, основывающуюся том, что электролиты в растворах распадаются на ионы – диссоциируют.
Диссоциация электролитов в растворе происходит под действием полярных молекул растворителя; наличие ионов в растворе предопределяет его электропроводность. Для оценки полноты диссоциации в теории электролитической диссоциации вводится понятие степень диссоциации α, которая равна отношению числа молекул n, распавшихся на ионы, к общему числу молекул N:
(62)
Величина степени диссоциации зависит от природы растворителя и растворенного вещества, концентрации раствора и температуры. По величине степени диссоциации электролиты подразделяются на три группы: сильные (α ≥ 0,7), средней силы (0,3 < α < 0,7) и слабые (α ≤ 0,3). К сильным электролитам относятся почти все соли (кроме Рb(СН3СОО)2, НgСl2, СdСl2), большинство неорганических кислот и щелочей; к слабым – все органические кислоты, вода, NН4ОН, Н2S и т.д. Электролитами средней силы являются некоторые неорганические кислоты: НF, НСN, Н3PO4.