- •1 Билет.
- •2 Билет.
- •3 Билет.
- •Билет 4.
- •Билет 5.
- •Билет 6.
- •Билет 7.
- •Физические свойства
- •Билет 8.
- •Билет 9.
- •Билет 10.
- •Билет 11.
- •Билет 12.
- •Полного тока закон
- •Билет 13.
- •Билет 14.
- •Билет 15.
- •Билет 16.
- •Билет 17.
- •Билет 18.
- •Энергия гармонических колебаний
- •Билет 19.
- •Билет 20.
- •Билет 21.
- •Билет 22.
- •Резонанс
- •Билет 23.
- •Билет 24.
- •Гармоническая волна
- •Лучи волны
- •Билет 25.
- •Билет 26.
- •Билет 27.
- •Билет 28.
- •179. Дифракция фраунгофера на одной щели
- •§ 180. Дифракция фраунгофера на дифракционной решетке
Билет 12.
Аналогично циркуляции вектора напряженности электростатического поля введем циркуляцию вектора магнитной индукции. Циркуляцией вектора В по заданному замкнутому контуру называется интеграл
где dl — вектор элементарной длины контура, направленной вдоль обхода контура, В1=Вcosa — составляющая вектора В в направлении касательной к контуру (с учетом выбранного направления обхода), а — угол между векторами В и dl.
Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В): циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной m0 на алгебраическую сумму токов, охватываемых этим контуром:
где n — число проводников с токами, охватываемых контуром L произвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого связано с направлением обхода по контуру правилом правого винта; ток противоположного направления считается отрицательным. Например, для системы токов, изображенных на рис. 173,
Выражение справедливо только для поля в вакууме, поскольку, как будет показано ниже, для поля в веществе необходимо учитывать молекулярные токи.
Продемонстрируем справедливость теоремы о циркуляции вектора В на примере
магнитного поля прямого тока I, перпендикулярного плоскости чертежа и направленного к нам. Представим себе замкнутый контур в виде окружности радиуса r. В каждой точке этого контура вектор В одинаков по модулю и направлен по касательной к окружности (она является и линией магнитной индукции). Следовательно, циркуляция вектора В равна
Согласно выражению, получим В•2pr=m0I (в вакууме), откуда B=m0/(2pr).
Таким образом, исходя из теоремы о циркуляции вектора В получили выражение для магнитной индукции поля прямого тока, выведенное выше .
Сравнивая выражения и для циркуляции векторов Е и В, видим, что между ними существует принципиальное различие. Циркуляция вектора Е электростатического поля всегда равна нулю, т. е. электростатическое поле является потенциальным. Циркуляция вектора В магнитного поля не равна нулю. Такое поле называетсявихревым.
Теорема о циркуляции вектора В имеет в учении о магнитном поле такое же значение, как теорема Гаусса в электростатике, так как позволяет находить магнитную индукцию поля без применения закона Био — Савара — Лапласа.
Полного тока закон
один из осн. законов электромагнитного поля. Согласно П. т. з., циркуляция вектора Н напряжённости магнитного поля вдоль произвольного замкнутого контура L, проведённого в поле, равна полному электрич. току сквозь поверхность 5, натянутую на контур L:фL.(H,dl)= интегралs(J,dS). Здесь J - вектор плотности полного тока, равный геом. сумме векторов плотностей тока проводимости и тока смещения.
При переменном токе соленоид создаёт переменное магнитное поле. Если соленоид используется как электромагнит, то на переменном токе величина силы притяжения изменяется. В случае якоря из магнитомягкого материала направление силы притяжения не изменяется. В случае магнитного якоря направление силы меняется. На переменном токе соленоид имеет комплексное сопротивление, активная составляющая которого определяется активным сопротивлением обмотки, а реактивная составляющая определяется индуктивностью обмотки.
