
- •Отрезки и прямые
- •Отрезки в координатной плоскости
- •Задачи об отрезках на координатной плоскости
- •Прямые на координатной плоскости
- •Векторы
- •Пересекающиеся прямые
- •Окружности Окружность
- •Хорды на окружности
- •Треугольники
- •Высота Задача на подобие треугольников.
- •Задача на применение теоремы Пифагора.
- •Сумма углов треугольника
- •Площадь треугольника
- •Биссектриса Биссектриса Задача.
- •Задача.
- •Биссектриса углов треугольника
- •Биссектриса внешнего угла
- •Медиана треугольника Медиана треугольника. Нахождение длины
- •Нахождение площади через медианы
- •Угол между высотой и медианой треугольника
- •Медианы прямоугольного треугольника
- •Подобие треугольников. Первый признак подобия
- •Подобие треугольников. Третий признак подобия
- •Решение
- •Подобие треугольников. Использование в задачах
- •Прямоугольный треугольник Прямоугольный треугольник
- •Элементарные задачи
- •Биссектриса в прямоугольном треугольнике
- •Применение теоремы Пифагора
- •Высота в прямоугольном треугольнике
- •Высота в прямоугольном треугольнике (Часть 2)
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Равнобедренный треугольник Определение понятия
- •Свойства равнобедренного треугольника
- •Признаки равнобедренного треугольника
- •Площадь равнобедренного треугольника
- •Равнобедренный треугольник
- •Задача.
- •Задача.
- •Площадь равнобедренного треугольника
- •Углы равнобедренного треугольника
- •Высота равнобедренного треугольника
- •Окружность, вписанная в равнобедренный треугольник
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника (часть 2)
- •Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами
- •Периметр четырехугольника Задачи на нахождение периметра четырехугольника
- •Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника
- •Углы четырехугольника
- •Трапеция (задачи с диагоналями)
- •Прямоугольная трапеция
- •Равнобокая (равнобедренная) трапеция Углы равнобокой (равнобедренной) трапеции
- •Равнобокая трапеция
- •Равнобокая трапеция (часть 2)
- •Задача.
- •Трапеция, описанная вокруг окружности
- •Параллелограмм
- •Параллелограмм (часть 2) Задача
- •Площадь параллелограмма
- •Теоретический материал
- •Задачи на нахождение площади параллелограмма
- •Высота параллелограмма
- •Периметр и стороны прямоугольника Периметр и стороны прямоугольника Задача
- •Площадь прямоугольника
- •Тригонометрия
- •Тригонометрические соотношения в прямоугольном треугольнике
- •Теорема синусов
- •Теорема синусов
- •Доказательство теоремы синусов
- •Теорема синусов
- •Теорема синусов (часть 2)
- •Теорема косинусов Теорема косинусов. Доказательство.
- •Теорема косинусов
- •Многоугольники Понятие многоугольника
- •Свойства многоугольника
- •Сумма углов многоугольника
- •Теорема о сумме углов выпуклого многоугольника
- •Задача.
- •Решение.
- •Задача.
- •Решение.
- •Решение.
- •Решение
- •Правильный многоугольник
- •Стереометрия
- •Прямые и плоскости Параллельные плоскости
- •Параллельные плоскости (часть 2)
- •Перпендикулярные плоскости
- •Прямые на плоскости
- •Точка и плоскость
- •Отрезок, пересекающий плоскость
- •Параллелограмм, рассеченный плоскостью
- •Параллелограмм и плоскость
- •Перпендикуляр к квадрату
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Призма. Решение задач Призма с правильным треугольником в основании
- •Призма с правильным треугольником в основании (часть 2)
- •Призма с треугольником в основании
- •Призма с треугольником в основании ( часть 2)
- •Призма с треугольником в основании ( часть 3)
- •Правильный четырехугольник в основании призмы
- •Задача.
- •Параллелограмм в основании призмы
- •Ромб в основании призмы
- •Параллепипед
- •Параллелепипед (часть 2)
- •Пирамида. Решение задач Свойства правильной пирамиды
- •С треугольником в основании Тетраэдр (пирамида)
- •Пирамида с прямоугольным треугольником в основании Задача
- •Пирамида с равнобедренным треугольником в основании
- •Правильная пирамида
- •Правильная пирамида с четырехугольником в основании Правильная пирамида с четырехугольником в основании
- •Правильная пирамида с четырехугольником в основании (часть 2)
- •Правильная пирамида с четырехугольником в основании (часть 3)
- •Нахождение углов пирамиды
- •Нахождение величины наклона боковых граней правильной прамиды
- •Нахождение расстояний в правильной четырехугольной пирамиде
- •Правильная пирамида с треугольником в основании. Тетраэдр
- •Тетраэдр
- •Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
- •Правильная пирамида с треугольником в основании
- •Правильная пирамида с треугольником в основании (часть 2)
- •Правильная пирамида с треугольником в основании (часть 3)
- •Правильная пирамида с треугольником в основании (часть 4)
- •Правильный тетраэдр (пирамида)
- •Практические примеры
- •С четырехугольником в основании Пирамида
- •Неправильная пирамида с прямоугольником в основании
- •Неправильная пирамида с четырехугольником в основании
- •Сфера (шар). Решение задач. Сфера (Шар)
- •Площадь сферы
- •Цилиндр Цилиндр
- •Цилиндр и его сечения
- •Цилиндр и его сечения (часть 2)
- •Диагональ цилиндра
- •Площадь поверхности цилиндра
- •Конус Конус
- •Площадь боковой поверхности конуса
- •Объем конуса
- •Объем конуса (2)
Подобие треугольников. Использование в задачах
Примечание. Это вторая часть урока с задачами по геометрии о подобии треугольников. Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме.
Задача
В треугольник ABC вписан квадрат KLMN. При этом точка M лежит на стороне AC, точка N лежит на стороне AC, точка K лежит на стороне AB, точка L лежит на стороне BC. Найти сторону квадрата, если длина стороны AC треугольника равна a, высота BD, опущенная из вершины B треугольника равна h. Решение. Обозначим искомую сторону квадарата как x. Обозначим точку, в которой высота треугольника BD пересекает сторону вписанного квадрата как E. Тогда BD = BE + ED Поскольку ED будет равно стороне квадрата, то h = BE + x BE = h - x Полученные треугольники ABC и BKL являются подобными, таким образом, все их геометрические размеры относятся друг к другу с неким коэффициентом подобия. Отношение оснований треугольников равно отношению оснований их высот. То есть: KL / AC = BE / BD KL - это сторона вписанного квадрата, значит x / a = ( h - x ) / h xh = a ( h - x ) xh = ah - ax xh + ax = ah x ( h + a ) = ah x = ah / ( h + a ) Ответ: ah / ( h + a )
Задача
В треугольнике ABC на стороне AB выбрана точка D, такая, что BD:BA=1:3. Плоскость, параллельная прямой AC и проходящая через точку D, пересекает отрезок BC в точке D1. Докажите, что треугольник DBD1 подобен треугольнику ABC. Решение. Для доказательства воспользуемся теоремой Фалеса: "Параллельные прямые отсекают на секущих пропорциональные отрезки". Поскольку плоскость, проходящая через точку D, которая пересекает отрезок BC в точке D1 параллельна прямой AC, то прямая DD1 принадлежащая этой плоскости, также параллельна прямой AC. Согласно теореме Фалеса, "Параллельные прямые отсекают на секущих пропорциональные отрезки". То есть: BD / AD = BD1 / D1C Согласно второму признаку подобия треугольников "Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, то треугольники подобны". В данном случае угол В у треугольников DBD1 и треугольника ABC является общим. Таким образом, треугольники подобны.
Прямоугольный треугольник Прямоугольный треугольник
Примечание. Это часть урока с
задачами по геометрии (раздел стереометрия).
Если Вам необходимо решить задачу по
геометрии, которой здесь нет - пишите
об этом в форуме. В задачах вместо символа
"квадратный корень" применяется
функция sqrt(), в которой sqrt - символ
квадратного корня, а в скобках указано
подкоренное выражение.
Задача.
Один из катетов прямоугольного
треугольника больше другого катета и
меньше гипотенузы на 1 см. Найти площадь
треугольника.
Решение.
Обозначим катет одного треугольника
через х, тогда второй катет будет равен
х+1, а гипотенуза х+2.
Тогда по теореме
Пифагора:
x2 + ( x + 1 )2 = ( x +
2 )2
x2 + ( x + 1 )2 = ( x + 2
)2
x2 + x2 + 2x + 1 = x2
+ 4x +4
2x2 + 2x +1 - x2 - 4x -4 = 0
x2
- 2x - 3 = 0
D = 16
x1 = 3
x2
= -1 (не подходит по условию задачи)
Площадь прямоугольного треугольника
равна
S = 1/2 ab = 1/2 * 3 * 4 = 6 см2 .
Площадь треугольника также можно
было найти по формуле Герона
S = 1/4
sqrt( ( a + b + c ) ( a + b - c ) ( a - b + c ) ( b + c - a ) )
S
= 1/4 sqrt( ( 3 + 4 + 5 ) ( 3 + 4 - 5 ) ( 3 - 4 + 5 ) ( 4 + 5 - 3 ) )
S = 1/4 sqrt( 12 * 2 * 4 * 6 )
S = 1/4 √ 576 = 6 см2
.
Ответ: 6 см2
Задача.
В прямоугольном треугольнике медианы
катетов равны корень из 52 и корень из
73. Найти площадь прямоугольного
треугольника.
Решение.
Каждая
из медиан катетов образует с прямым
углом прямоугольный треугольник.
Обозначим длину половины каждого катета
как a и b. Тогда, по теореме Пифагора
получим:
Откуда
a2 = 73 - 4b2
подставим
выражение во второе уравнение
b2
+ 4( 73 - 4b2 ) = 52
b2 + 292 - 16b2
= 52
15b2 = 240
b2 = 16
b = 4
Соответственно, а2 = 73 - 4 *
16 = 9, а = 3
Таким образом, катеты
прямоугольного треугольника равны (2a
и 2b) 8 и 6 см.
Откуда площадь
прямоугольного треугольника равна
S
= 1/2 8*6 = 24 см2 .
Ответ:
Площадь прямоугольного треугольника
равна 24 см2 .