
- •Отрезки и прямые
- •Отрезки в координатной плоскости
- •Задачи об отрезках на координатной плоскости
- •Прямые на координатной плоскости
- •Векторы
- •Пересекающиеся прямые
- •Окружности Окружность
- •Хорды на окружности
- •Треугольники
- •Высота Задача на подобие треугольников.
- •Задача на применение теоремы Пифагора.
- •Сумма углов треугольника
- •Площадь треугольника
- •Биссектриса Биссектриса Задача.
- •Задача.
- •Биссектриса углов треугольника
- •Биссектриса внешнего угла
- •Медиана треугольника Медиана треугольника. Нахождение длины
- •Нахождение площади через медианы
- •Угол между высотой и медианой треугольника
- •Медианы прямоугольного треугольника
- •Подобие треугольников. Первый признак подобия
- •Подобие треугольников. Третий признак подобия
- •Решение
- •Подобие треугольников. Использование в задачах
- •Прямоугольный треугольник Прямоугольный треугольник
- •Элементарные задачи
- •Биссектриса в прямоугольном треугольнике
- •Применение теоремы Пифагора
- •Высота в прямоугольном треугольнике
- •Высота в прямоугольном треугольнике (Часть 2)
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Равнобедренный треугольник Определение понятия
- •Свойства равнобедренного треугольника
- •Признаки равнобедренного треугольника
- •Площадь равнобедренного треугольника
- •Равнобедренный треугольник
- •Задача.
- •Задача.
- •Площадь равнобедренного треугольника
- •Углы равнобедренного треугольника
- •Высота равнобедренного треугольника
- •Окружность, вписанная в равнобедренный треугольник
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника (часть 2)
- •Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами
- •Периметр четырехугольника Задачи на нахождение периметра четырехугольника
- •Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника
- •Углы четырехугольника
- •Трапеция (задачи с диагоналями)
- •Прямоугольная трапеция
- •Равнобокая (равнобедренная) трапеция Углы равнобокой (равнобедренной) трапеции
- •Равнобокая трапеция
- •Равнобокая трапеция (часть 2)
- •Задача.
- •Трапеция, описанная вокруг окружности
- •Параллелограмм
- •Параллелограмм (часть 2) Задача
- •Площадь параллелограмма
- •Теоретический материал
- •Задачи на нахождение площади параллелограмма
- •Высота параллелограмма
- •Периметр и стороны прямоугольника Периметр и стороны прямоугольника Задача
- •Площадь прямоугольника
- •Тригонометрия
- •Тригонометрические соотношения в прямоугольном треугольнике
- •Теорема синусов
- •Теорема синусов
- •Доказательство теоремы синусов
- •Теорема синусов
- •Теорема синусов (часть 2)
- •Теорема косинусов Теорема косинусов. Доказательство.
- •Теорема косинусов
- •Многоугольники Понятие многоугольника
- •Свойства многоугольника
- •Сумма углов многоугольника
- •Теорема о сумме углов выпуклого многоугольника
- •Задача.
- •Решение.
- •Задача.
- •Решение.
- •Решение.
- •Решение
- •Правильный многоугольник
- •Стереометрия
- •Прямые и плоскости Параллельные плоскости
- •Параллельные плоскости (часть 2)
- •Перпендикулярные плоскости
- •Прямые на плоскости
- •Точка и плоскость
- •Отрезок, пересекающий плоскость
- •Параллелограмм, рассеченный плоскостью
- •Параллелограмм и плоскость
- •Перпендикуляр к квадрату
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Призма. Решение задач Призма с правильным треугольником в основании
- •Призма с правильным треугольником в основании (часть 2)
- •Призма с треугольником в основании
- •Призма с треугольником в основании ( часть 2)
- •Призма с треугольником в основании ( часть 3)
- •Правильный четырехугольник в основании призмы
- •Задача.
- •Параллелограмм в основании призмы
- •Ромб в основании призмы
- •Параллепипед
- •Параллелепипед (часть 2)
- •Пирамида. Решение задач Свойства правильной пирамиды
- •С треугольником в основании Тетраэдр (пирамида)
- •Пирамида с прямоугольным треугольником в основании Задача
- •Пирамида с равнобедренным треугольником в основании
- •Правильная пирамида
- •Правильная пирамида с четырехугольником в основании Правильная пирамида с четырехугольником в основании
- •Правильная пирамида с четырехугольником в основании (часть 2)
- •Правильная пирамида с четырехугольником в основании (часть 3)
- •Нахождение углов пирамиды
- •Нахождение величины наклона боковых граней правильной прамиды
- •Нахождение расстояний в правильной четырехугольной пирамиде
- •Правильная пирамида с треугольником в основании. Тетраэдр
- •Тетраэдр
- •Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
- •Правильная пирамида с треугольником в основании
- •Правильная пирамида с треугольником в основании (часть 2)
- •Правильная пирамида с треугольником в основании (часть 3)
- •Правильная пирамида с треугольником в основании (часть 4)
- •Правильный тетраэдр (пирамида)
- •Практические примеры
- •С четырехугольником в основании Пирамида
- •Неправильная пирамида с прямоугольником в основании
- •Неправильная пирамида с четырехугольником в основании
- •Сфера (шар). Решение задач. Сфера (Шар)
- •Площадь сферы
- •Цилиндр Цилиндр
- •Цилиндр и его сечения
- •Цилиндр и его сечения (часть 2)
- •Диагональ цилиндра
- •Площадь поверхности цилиндра
- •Конус Конус
- •Площадь боковой поверхности конуса
- •Объем конуса
- •Объем конуса (2)
Подобие треугольников. Первый признак подобия
Примечание. Это урок с задачами по геометрии о подобии треугольников. Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме.
Задача
В треугольнике ABC угол A вдвое больше
угла B, а длины противолежащих этим углам
сторон соответственно равны 12 и 8. Найти
третью сторону.
Решение.
Для угла А построим биссектрису на
противоположную сторону BC. Пусть она
пересечет противоположную сторону в
точке К.
Исходя из того, что AK -
биссектриса, углы ABC и KAC - равны. Поскольку
угол С у них общий, то и третий угол этих
треугольников является одинаковым.
Таким образом, треугольники являются
подобными по трем углам.
Исходя
из того, что треугольники ABC и AKC подобны:
AC : BC = KC : AC = AK : AB
AC : BC = KC : AC
8
/ 12 = KC / 8
KC = 64 / 12 = 16 / 3
Поскольку
угол AKB = ABK (BK - биссектрисса, следовательно
- треугольник AKB равнобедренный)
Откуда
AK = BK
Учтем, что BK = AC - KC, тогда
AK
= BK = 12 - 16 / 3
Теперь вернемся к
свойствам подобных треугольников
KC
: AC = AK : AB
и подставим известные
значения
(16 / 3 ) / 8 = ( 12 - 16 / 3 ) / AB
AB
= (AK * AC) / KC = 10
Ответ: 10 см
Подобие треугольников. Третий признак подобия
В этом уроке, вы найдете решение задач по геометрии, которые используют правила подобия треугольников и являются интересными для решения. Я их размещаю здесь если они вызывают некоторые трудности при решении у школьников.
Задача
Треугольники ABC и A1B1C1 подобны. Соотношение сторон теругольников 3:4 . Площадь одного из них больше площади другого на 14 см2. Найдите площади треугольников.
Решение
Для решения данной задачи будем руководствоваться основным свойством подобия треугольников - все размеры одного теругольника подобны размерам другого. Сначала опустим на сторону а каждого треугольника высоту h. Таким образом площадь первого треугольника будет выражаться формулой S1=1/2ah, а площадь второго треугольника формулой S2=1/2*3/4a*3/4h. Таким образом, можно определить соотношение площадей треугольников:
S1/S2 = 1/2 ah / ( 1/2 * 9/16 ah)
S1/S2 = ah / ( 9/16 ah)
S1/S2 = 16/9
Выше перечисленные преобразования мы могли бы не проводить, если нам известна теорема: "площади подобных треугольников относятся как квадрат соотношения их сторон"
Выразим площадь одного треугольника через площадь другого:
S1=16S2/9
По условию задачи S1-S2=14, таким образом
16S2/9-S2=14
7/9S2=14
S2=18, следовательно S1 = 14+18=32
Ответ: 18 и 32
Задача
Стороны AB и DC трапеции ABCD продлили так, что прямые AB и DC пересеклись в точке E. Таким образом, продолжения сторон трапеции образовали треугольник площадью 98 квадратных сантиметров. Найти площадь трапеции, если ее основания относятся друг к другу как 5 к 7.
Решение
Начало решения. Из условия задачи видно, что у нас получились треугольники EAD и EBC. Поскольку оба треугольника имеют общий угол E, а основания трапеции, являющиеся параллельными, согласно теореме Фалеса, отсекают на сторонах AE и DE пропорциональные отрезки отрезки, то треугольники EAD и EBC являются подобными. Способ 1. Опустим из вершины E высоту на основание AD. Она же будет высотой для основания BC, поскольку основания трапеции параллельны. Обозначим высоту для треугольника EAD как h1, а для треугольника EBC как h2. Таким образом: Площадь треугольника EAD будет равна SEAD=1/2*AD*h1. Площадь треугольника EBC будет равна SEBC=1/2*BC*h2. Поскольку треугольники подобны, то все стороны относятся друг к другу с одним и тем же коэффициентом подобия. Поскольку основания трапеции относятся дрцг к другу как 5:7, то и все остальные стороны относятся друг к другу с тем же соотношением. Из этого следует: BC / AD = 5 / 7 BC = 5AD / 7 аналогично: h2 / h1 = 5 / 7 h2 = 5h1 / 7 Таким образом: SEBC=1/2*BC*h2. Подставим значения сторон меньшего подобного треугольника через значения сторон большего подобного треугольника: SEBC=1/2*(5AD / 7)*(5h1 / 7) SEBC=1/2*AD*h1*25 / 49 Заметим, что по условию задачи площадь получившегося треугольника EAD равна 98 сантиметрам, одновременно SEAD=1/2*AD*h1. Подставим вместо указанного выражения его значение: SEBC = 98*25/49 SEBC = 50 см2 Способ 2. Если нам известна теорема: "площади подобных треугольников относятся как квадрат соотношения их сторон", то площади подобных треугольников AED и BEC будут соотноситься как 52 : 72. То есть: SEBC / SEAD = 52 / 72 SEBC / SEAD = 25 / 49 SEBC = SEAD * 25 / 49 Поскольку площадь треугольника EAD известна нам по условию и составляет 98 см2 , то SEBC = 98 * 25 / 49 SEBC = 50 см2 Продолжение решения. Площадь трапеции ABCD равна разности площадей треугольников AED и BEC. Таким образом, площадь трапеции равна 98 - 50 = 48 см2. Ответ: 48 см2.