Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
решения задачь по геометрии из ЕНТ.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.12 Mб
Скачать

Биссектриса Биссектриса Задача.

Биссектриса угла A треугольника ABC делит сторону BC на отрезки BK = 8 см и KC = 18 см. Определите длину стороны AC, если длина стороны AB = 12 см.

Решение.

Для решения задачи потребуется знание следующей теоремы:

Биссектриса  любого внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам треугольника.

Для условий данной задачи это означает:

BK/KC = AB/AC

8/18=12/x

x=27 см

Задача.

Найти отрезки, на которые биссектриса AD треугольника ABC делит сторону BC, если AB=6 BC=7 AC=8.

Решение.

Для решения задачи потребуется знание следующей теоремы:

Биссектриса  любого внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам треугольника.

Для условий данной задачи это означает:

BD/DC = AB/AC

BD/DC = 6/8

Обозначим BD = x, тогда DC = 7 - x

x / ( 7 - x ) = 6/8

8x = 42 - 6x

14x = 42

x =3

Тогда DC = 4

Ответ: BD = 3, DC = 4 см

Биссектриса углов треугольника

Примечание. В данном уроке изложены задачи по геометрии о биссектрисе. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. Почти наверняка курс будет дополнен. Задача. Луч AD является биссектрисой угла A. На сторонах угла A отмечены точки B,C так что угол ADC равен углу ADB. Доказать, что AB=AC. Решение. Рассмотрим треугольники ADB и ADC. Сторона AD у них общая, углы DAC и DAB равны, так как биссектриса AD делит угол А пополам, а углы ADC и ADB равны по условию задачи. Таким образом, треугольники ADB и ADC равны по стороне и двум углам. Следовательно AB = AC.

Биссектриса внешнего угла

Примечание. В данном уроке изложены задачи по геометрии о биссектрисе. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. Почти наверняка курс будет дополнен. Задача. На стороне AD треугольника ADC отмечена точка B так,что BC = BD. Докажите,что прямая DC параллельна биссектрисе угла ABC. Решение. Поскольку по условию задачи BC = BD, то треугольник DBC - равнобедренный. Для данного треугольника угол CBA является внешним. Таким образом, решение задачи сводится к доказательству утверждения, что биссектриса внешнего угла равнобедренного треугольника параллельна его основанию. Угол DBA - равзвернутый и равен 180 градусам. Сумма углов треугольника также DBC равна 180 градусам. Поскольку в состав развернутого угла DBA входит угол DBC, то градусная мера угла ABC равна сумме остальных углов равнобедренного треугольника, которые равны между собой. Таким образом, угол ABC равен удвоенной градусной мере угла DCB. Исходя из того, что BK - биссектриса угла ABC, то углы KBC = DCB. Рассмотрим прямые BK и DC. Их внутренние накрест лежащие углы равны (KBC = DCB). Таким образом, прямые параллельны.

Медиана треугольника Медиана треугольника. Нахождение длины

Примечание. В данном уроке изложены задачи по геометрии о медиане треугольника. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. Почти наверняка курс будет дополнен. Задача. Стороны треугольника равны 8, 9 и 13 сантиметров. К наибольшей стороне треугольника проведена медиана. Определите медиану треугольника исходя из размеров его сторон. Решение. Задача имеет два способа решения. Первый, который не нравится учителям средней школы, но является наиболее универсальным. Способ 1. Применим Теорему Стюарта, согласно которой квадрат медианы равен одной четвертой от суммы удвоенных квадратов сторон из которой вычли квадрат стороны, к которой проведена медиана. mc2 = ( 2a2 + 2b2 - c2 ) / 4 Соответственно mc2 = ( 2 * 82 + 2 * 92 - 132) / 4 mc2 = 30,25 mc = 5,5 см Способ 2. Второй способ решения, который преподаватели в школе любят - это дополнительные построения треугольника до параллелограмма и решение через теорему о диагоналях параллелограмма. Продлим стороны треугольника и медиану достроив их до параллелограмма. В этом случае медиана треугольника будет равна половине диагонали получившегося параллелограмма, а две стороны треугольника - его боковым сторонам. Третья сторона треугольника, к которой была проведена медиана, является второй диагональю получившегося параллелограмма. Согласно теореме, сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон. 2(a2+b2)=d12+d22 Обозначим диагональ параллелограмма, которая образована продолжением медианы исходного треугольника как х, получим: 2( 82 + 92 ) = 132 + x2 290 = 169 + x2 x2 = 290 - 169 x2 = 121 х = 11 Поскольку искомая медиана равна половине диагонали параллелограмма, то величина медианы треугольника составит 11 / 2 = 5,5 см Ответ: 5,5 см