
- •Отрезки и прямые
- •Отрезки в координатной плоскости
- •Задачи об отрезках на координатной плоскости
- •Прямые на координатной плоскости
- •Векторы
- •Пересекающиеся прямые
- •Окружности Окружность
- •Хорды на окружности
- •Треугольники
- •Высота Задача на подобие треугольников.
- •Задача на применение теоремы Пифагора.
- •Сумма углов треугольника
- •Площадь треугольника
- •Биссектриса Биссектриса Задача.
- •Задача.
- •Биссектриса углов треугольника
- •Биссектриса внешнего угла
- •Медиана треугольника Медиана треугольника. Нахождение длины
- •Нахождение площади через медианы
- •Угол между высотой и медианой треугольника
- •Медианы прямоугольного треугольника
- •Подобие треугольников. Первый признак подобия
- •Подобие треугольников. Третий признак подобия
- •Решение
- •Подобие треугольников. Использование в задачах
- •Прямоугольный треугольник Прямоугольный треугольник
- •Элементарные задачи
- •Биссектриса в прямоугольном треугольнике
- •Применение теоремы Пифагора
- •Высота в прямоугольном треугольнике
- •Высота в прямоугольном треугольнике (Часть 2)
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Равнобедренный треугольник Определение понятия
- •Свойства равнобедренного треугольника
- •Признаки равнобедренного треугольника
- •Площадь равнобедренного треугольника
- •Равнобедренный треугольник
- •Задача.
- •Задача.
- •Площадь равнобедренного треугольника
- •Углы равнобедренного треугольника
- •Высота равнобедренного треугольника
- •Окружность, вписанная в равнобедренный треугольник
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника (часть 2)
- •Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами
- •Периметр четырехугольника Задачи на нахождение периметра четырехугольника
- •Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника
- •Углы четырехугольника
- •Трапеция (задачи с диагоналями)
- •Прямоугольная трапеция
- •Равнобокая (равнобедренная) трапеция Углы равнобокой (равнобедренной) трапеции
- •Равнобокая трапеция
- •Равнобокая трапеция (часть 2)
- •Задача.
- •Трапеция, описанная вокруг окружности
- •Параллелограмм
- •Параллелограмм (часть 2) Задача
- •Площадь параллелограмма
- •Теоретический материал
- •Задачи на нахождение площади параллелограмма
- •Высота параллелограмма
- •Периметр и стороны прямоугольника Периметр и стороны прямоугольника Задача
- •Площадь прямоугольника
- •Тригонометрия
- •Тригонометрические соотношения в прямоугольном треугольнике
- •Теорема синусов
- •Теорема синусов
- •Доказательство теоремы синусов
- •Теорема синусов
- •Теорема синусов (часть 2)
- •Теорема косинусов Теорема косинусов. Доказательство.
- •Теорема косинусов
- •Многоугольники Понятие многоугольника
- •Свойства многоугольника
- •Сумма углов многоугольника
- •Теорема о сумме углов выпуклого многоугольника
- •Задача.
- •Решение.
- •Задача.
- •Решение.
- •Решение.
- •Решение
- •Правильный многоугольник
- •Стереометрия
- •Прямые и плоскости Параллельные плоскости
- •Параллельные плоскости (часть 2)
- •Перпендикулярные плоскости
- •Прямые на плоскости
- •Точка и плоскость
- •Отрезок, пересекающий плоскость
- •Параллелограмм, рассеченный плоскостью
- •Параллелограмм и плоскость
- •Перпендикуляр к квадрату
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Призма. Решение задач Призма с правильным треугольником в основании
- •Призма с правильным треугольником в основании (часть 2)
- •Призма с треугольником в основании
- •Призма с треугольником в основании ( часть 2)
- •Призма с треугольником в основании ( часть 3)
- •Правильный четырехугольник в основании призмы
- •Задача.
- •Параллелограмм в основании призмы
- •Ромб в основании призмы
- •Параллепипед
- •Параллелепипед (часть 2)
- •Пирамида. Решение задач Свойства правильной пирамиды
- •С треугольником в основании Тетраэдр (пирамида)
- •Пирамида с прямоугольным треугольником в основании Задача
- •Пирамида с равнобедренным треугольником в основании
- •Правильная пирамида
- •Правильная пирамида с четырехугольником в основании Правильная пирамида с четырехугольником в основании
- •Правильная пирамида с четырехугольником в основании (часть 2)
- •Правильная пирамида с четырехугольником в основании (часть 3)
- •Нахождение углов пирамиды
- •Нахождение величины наклона боковых граней правильной прамиды
- •Нахождение расстояний в правильной четырехугольной пирамиде
- •Правильная пирамида с треугольником в основании. Тетраэдр
- •Тетраэдр
- •Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
- •Правильная пирамида с треугольником в основании
- •Правильная пирамида с треугольником в основании (часть 2)
- •Правильная пирамида с треугольником в основании (часть 3)
- •Правильная пирамида с треугольником в основании (часть 4)
- •Правильный тетраэдр (пирамида)
- •Практические примеры
- •С четырехугольником в основании Пирамида
- •Неправильная пирамида с прямоугольником в основании
- •Неправильная пирамида с четырехугольником в основании
- •Сфера (шар). Решение задач. Сфера (Шар)
- •Площадь сферы
- •Цилиндр Цилиндр
- •Цилиндр и его сечения
- •Цилиндр и его сечения (часть 2)
- •Диагональ цилиндра
- •Площадь поверхности цилиндра
- •Конус Конус
- •Площадь боковой поверхности конуса
- •Объем конуса
- •Объем конуса (2)
Биссектриса Биссектриса Задача.
Биссектриса угла A треугольника ABC делит сторону BC на отрезки BK = 8 см и KC = 18 см. Определите длину стороны AC, если длина стороны AB = 12 см.
Решение.
Для решения задачи потребуется знание следующей теоремы:
Биссектриса любого внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам треугольника.
Для условий данной задачи это означает:
BK/KC = AB/AC
8/18=12/x
x=27 см
Задача.
Найти отрезки, на которые биссектриса AD треугольника ABC делит сторону BC, если AB=6 BC=7 AC=8.
Решение.
Для решения задачи потребуется знание следующей теоремы:
Биссектриса любого внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам треугольника.
Для условий данной задачи это означает:
BD/DC = AB/AC
BD/DC = 6/8
Обозначим BD = x, тогда DC = 7 - x
x / ( 7 - x ) = 6/8
8x = 42 - 6x
14x = 42
x =3
Тогда DC = 4
Ответ: BD = 3, DC = 4 см
Биссектриса углов треугольника
Примечание. В данном уроке
изложены задачи по геометрии о биссектрисе.
Если Вам необходимо решить задачу по
геометрии, которой здесь нет - пишите
об этом в форуме. Почти наверняка курс
будет дополнен.
Задача.
Луч AD является биссектрисой угла
A. На сторонах угла A отмечены точки B,C
так что угол ADC равен углу ADB. Доказать,
что AB=AC.
Решение.
Рассмотрим треугольники ADB и ADC.
Сторона AD у них общая, углы DAC и DAB равны,
так как биссектриса AD делит угол А
пополам, а углы ADC и ADB равны по условию
задачи. Таким образом, треугольники ADB
и ADC равны по стороне и двум углам.
Следовательно AB = AC.
Биссектриса внешнего угла
Примечание. В данном уроке
изложены задачи по геометрии о биссектрисе.
Если Вам необходимо решить задачу по
геометрии, которой здесь нет - пишите
об этом в форуме. Почти наверняка курс
будет дополнен.
Задача.
На
стороне AD треугольника ADC отмечена точка
B так,что BC = BD. Докажите,что прямая DC
параллельна биссектрисе угла ABC.
Решение.
Поскольку
по условию задачи BC = BD, то треугольник
DBC - равнобедренный.
Для данного
треугольника угол CBA является внешним.
Таким образом, решение задачи сводится
к доказательству утверждения, что
биссектриса внешнего угла равнобедренного
треугольника параллельна его основанию.
Угол DBA - равзвернутый и равен 180
градусам. Сумма углов треугольника
также DBC равна 180 градусам. Поскольку в
состав развернутого угла DBA входит угол
DBC, то градусная мера угла ABC равна сумме
остальных углов равнобедренного
треугольника, которые равны между собой.
Таким образом, угол ABC равен
удвоенной градусной мере угла DCB. Исходя
из того, что BK - биссектриса угла ABC, то
углы KBC = DCB.
Рассмотрим прямые BK
и DC. Их внутренние накрест лежащие углы
равны (KBC = DCB). Таким образом, прямые
параллельны.
Медиана треугольника Медиана треугольника. Нахождение длины
Примечание. В данном уроке изложены задачи по геометрии о медиане треугольника. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. Почти наверняка курс будет дополнен. Задача. Стороны треугольника равны 8, 9 и 13 сантиметров. К наибольшей стороне треугольника проведена медиана. Определите медиану треугольника исходя из размеров его сторон. Решение. Задача имеет два способа решения. Первый, который не нравится учителям средней школы, но является наиболее универсальным. Способ 1. Применим Теорему Стюарта, согласно которой квадрат медианы равен одной четвертой от суммы удвоенных квадратов сторон из которой вычли квадрат стороны, к которой проведена медиана. mc2 = ( 2a2 + 2b2 - c2 ) / 4 Соответственно mc2 = ( 2 * 82 + 2 * 92 - 132) / 4 mc2 = 30,25 mc = 5,5 см Способ 2. Второй способ решения, который преподаватели в школе любят - это дополнительные построения треугольника до параллелограмма и решение через теорему о диагоналях параллелограмма. Продлим стороны треугольника и медиану достроив их до параллелограмма. В этом случае медиана треугольника будет равна половине диагонали получившегося параллелограмма, а две стороны треугольника - его боковым сторонам. Третья сторона треугольника, к которой была проведена медиана, является второй диагональю получившегося параллелограмма. Согласно теореме, сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон. 2(a2+b2)=d12+d22 Обозначим диагональ параллелограмма, которая образована продолжением медианы исходного треугольника как х, получим: 2( 82 + 92 ) = 132 + x2 290 = 169 + x2 x2 = 290 - 169 x2 = 121 х = 11 Поскольку искомая медиана равна половине диагонали параллелограмма, то величина медианы треугольника составит 11 / 2 = 5,5 см Ответ: 5,5 см