
- •Отрезки и прямые
- •Отрезки в координатной плоскости
- •Задачи об отрезках на координатной плоскости
- •Прямые на координатной плоскости
- •Векторы
- •Пересекающиеся прямые
- •Окружности Окружность
- •Хорды на окружности
- •Треугольники
- •Высота Задача на подобие треугольников.
- •Задача на применение теоремы Пифагора.
- •Сумма углов треугольника
- •Площадь треугольника
- •Биссектриса Биссектриса Задача.
- •Задача.
- •Биссектриса углов треугольника
- •Биссектриса внешнего угла
- •Медиана треугольника Медиана треугольника. Нахождение длины
- •Нахождение площади через медианы
- •Угол между высотой и медианой треугольника
- •Медианы прямоугольного треугольника
- •Подобие треугольников. Первый признак подобия
- •Подобие треугольников. Третий признак подобия
- •Решение
- •Подобие треугольников. Использование в задачах
- •Прямоугольный треугольник Прямоугольный треугольник
- •Элементарные задачи
- •Биссектриса в прямоугольном треугольнике
- •Применение теоремы Пифагора
- •Высота в прямоугольном треугольнике
- •Высота в прямоугольном треугольнике (Часть 2)
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Равнобедренный треугольник Определение понятия
- •Свойства равнобедренного треугольника
- •Признаки равнобедренного треугольника
- •Площадь равнобедренного треугольника
- •Равнобедренный треугольник
- •Задача.
- •Задача.
- •Площадь равнобедренного треугольника
- •Углы равнобедренного треугольника
- •Высота равнобедренного треугольника
- •Окружность, вписанная в равнобедренный треугольник
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника (часть 2)
- •Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами
- •Периметр четырехугольника Задачи на нахождение периметра четырехугольника
- •Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника
- •Углы четырехугольника
- •Трапеция (задачи с диагоналями)
- •Прямоугольная трапеция
- •Равнобокая (равнобедренная) трапеция Углы равнобокой (равнобедренной) трапеции
- •Равнобокая трапеция
- •Равнобокая трапеция (часть 2)
- •Задача.
- •Трапеция, описанная вокруг окружности
- •Параллелограмм
- •Параллелограмм (часть 2) Задача
- •Площадь параллелограмма
- •Теоретический материал
- •Задачи на нахождение площади параллелограмма
- •Высота параллелограмма
- •Периметр и стороны прямоугольника Периметр и стороны прямоугольника Задача
- •Площадь прямоугольника
- •Тригонометрия
- •Тригонометрические соотношения в прямоугольном треугольнике
- •Теорема синусов
- •Теорема синусов
- •Доказательство теоремы синусов
- •Теорема синусов
- •Теорема синусов (часть 2)
- •Теорема косинусов Теорема косинусов. Доказательство.
- •Теорема косинусов
- •Многоугольники Понятие многоугольника
- •Свойства многоугольника
- •Сумма углов многоугольника
- •Теорема о сумме углов выпуклого многоугольника
- •Задача.
- •Решение.
- •Задача.
- •Решение.
- •Решение.
- •Решение
- •Правильный многоугольник
- •Стереометрия
- •Прямые и плоскости Параллельные плоскости
- •Параллельные плоскости (часть 2)
- •Перпендикулярные плоскости
- •Прямые на плоскости
- •Точка и плоскость
- •Отрезок, пересекающий плоскость
- •Параллелограмм, рассеченный плоскостью
- •Параллелограмм и плоскость
- •Перпендикуляр к квадрату
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Призма. Решение задач Призма с правильным треугольником в основании
- •Призма с правильным треугольником в основании (часть 2)
- •Призма с треугольником в основании
- •Призма с треугольником в основании ( часть 2)
- •Призма с треугольником в основании ( часть 3)
- •Правильный четырехугольник в основании призмы
- •Задача.
- •Параллелограмм в основании призмы
- •Ромб в основании призмы
- •Параллепипед
- •Параллелепипед (часть 2)
- •Пирамида. Решение задач Свойства правильной пирамиды
- •С треугольником в основании Тетраэдр (пирамида)
- •Пирамида с прямоугольным треугольником в основании Задача
- •Пирамида с равнобедренным треугольником в основании
- •Правильная пирамида
- •Правильная пирамида с четырехугольником в основании Правильная пирамида с четырехугольником в основании
- •Правильная пирамида с четырехугольником в основании (часть 2)
- •Правильная пирамида с четырехугольником в основании (часть 3)
- •Нахождение углов пирамиды
- •Нахождение величины наклона боковых граней правильной прамиды
- •Нахождение расстояний в правильной четырехугольной пирамиде
- •Правильная пирамида с треугольником в основании. Тетраэдр
- •Тетраэдр
- •Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
- •Правильная пирамида с треугольником в основании
- •Правильная пирамида с треугольником в основании (часть 2)
- •Правильная пирамида с треугольником в основании (часть 3)
- •Правильная пирамида с треугольником в основании (часть 4)
- •Правильный тетраэдр (пирамида)
- •Практические примеры
- •С четырехугольником в основании Пирамида
- •Неправильная пирамида с прямоугольником в основании
- •Неправильная пирамида с четырехугольником в основании
- •Сфера (шар). Решение задач. Сфера (Шар)
- •Площадь сферы
- •Цилиндр Цилиндр
- •Цилиндр и его сечения
- •Цилиндр и его сечения (часть 2)
- •Диагональ цилиндра
- •Площадь поверхности цилиндра
- •Конус Конус
- •Площадь боковой поверхности конуса
- •Объем конуса
- •Объем конуса (2)
Правильная пирамида с треугольником в основании. Тетраэдр
Правильная треугольная пирамида - это пирамида, основанием которой является правильный треугольник, а вершина проецируется в центр основания.
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
Тетраэдр
Частным случаем правильной треугольной пирамиды является тетраэдр.
Тетраэдр - это правильный многогранник (правильная треугольная пирамида) у которой все грани являются правильными треугольниками.
У тетраэдра:
Все грани равны
4 грани, 4 вершины и 6 ребер
Все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны
Медиана тетраэдра - это отрезок, соединяющий вершину с точкой пересечения медиан противоположной грани (медиан равностороннего треугольника, противолежащего вершине)
Бимедиана тетраэдра - это отрезок, соединяющий середины скрещивающихся рёбер (соединяющий середины сторон треугольника, являющегося одной из граней тетраэдра)
Высота тетраэдра - это отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани (то есть является высотой, проведенной от любой грани, также совпадает с центром описанной окружности).
Тетраэдр обладает следующими свойствами:
Все медианы и бимедианы тетраэдра пересекаются в одной точке
Эта точка делит медианы в отношении 3:1, считая от вершины
Эта точка делит бимедианы пополам
Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
См. пример задачи: формулы и свойства тетраэдра.
Правильная пирамида с треугольником в основании
Примечание. Если Вам необходимо
решить задачу по геометрии, которой
здесь нет - пишите об этом в форуме. В
задачах вместо символа "квадратный
корень" применяется функция sqrt(), в
которой sqrt - символ квадратного корня,
а в скобках указано подкоренное выражение.
Для простых подкоренных выражений может
использоваться знак "√".
Задача.
Боковая грань правильной
треугольной пирамиды представляет
собой правильный треугольник, площадь
которого 16 корней из 3 см2
(16√3). Вычислить периметр основания
пирамиды.
Решение.
Правильный треугольник - это
равносторонний треугольник. Соответственно,
боковая грань пирамиды представляет
собой равносторонний треугольник.
Площадь равностороннего треугольника
равна:
Соответственно:
16√3 = a2 √3 / 4
16 = a2 / 4
a2 = 64
a = 8 см
Основанием
правильной треугольной пирамиды является
правильный (равносторонний) треугольник.
Таким образом, периметр основания
пирамиды равен
8 * 3 = 24 см
Ответ:
24 см.
Задача.
В правильной
треугольной пирамиде высота равна 10
см, а сторона основания 16 см. Найти
площадь боковой поверхности.
Решение.
Поскольку
основанием правильной треугольной
пирамиды является равносторонний
треугольник, то AO является радиусом
описанной вокруг основания окружности.
(Это следует из свойств
правильной пирамиды)
Радиус
окружности, описанной вокруг равностороннего
треугольника найдем из его свойств
Откуда
длина ребер правильной треугольной
пирамиды будет равна:
AM2 = MO2
+ AO2
высота пирамиды известна
по условию (10 см), AO = 16√3/3
AM2 =
100 + 256/3
AM = √(556/3)
Каждая из
сторон пирамиды представляет собой
равнобедренный треугольник. Площадь
равнобедренного треугольника найдем
как
S
= 1/2 * 16 sqrt( (√(556/3) + 8) (√(556/3) - 8) )
S =
8 sqrt( (556/3) - 64 )
S = 8 sqrt( 364/3 )
S
= 16 sqrt( 91/3 )
Поскольку все три
грани у правильной пирамиды равны, то
площадь боковой поверхности будет равна
3S = 48 √(91/3)
Ответ: 48 √(91/3)