
- •Отрезки и прямые
- •Отрезки в координатной плоскости
- •Задачи об отрезках на координатной плоскости
- •Прямые на координатной плоскости
- •Векторы
- •Пересекающиеся прямые
- •Окружности Окружность
- •Хорды на окружности
- •Треугольники
- •Высота Задача на подобие треугольников.
- •Задача на применение теоремы Пифагора.
- •Сумма углов треугольника
- •Площадь треугольника
- •Биссектриса Биссектриса Задача.
- •Задача.
- •Биссектриса углов треугольника
- •Биссектриса внешнего угла
- •Медиана треугольника Медиана треугольника. Нахождение длины
- •Нахождение площади через медианы
- •Угол между высотой и медианой треугольника
- •Медианы прямоугольного треугольника
- •Подобие треугольников. Первый признак подобия
- •Подобие треугольников. Третий признак подобия
- •Решение
- •Подобие треугольников. Использование в задачах
- •Прямоугольный треугольник Прямоугольный треугольник
- •Элементарные задачи
- •Биссектриса в прямоугольном треугольнике
- •Применение теоремы Пифагора
- •Высота в прямоугольном треугольнике
- •Высота в прямоугольном треугольнике (Часть 2)
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Равнобедренный треугольник Определение понятия
- •Свойства равнобедренного треугольника
- •Признаки равнобедренного треугольника
- •Площадь равнобедренного треугольника
- •Равнобедренный треугольник
- •Задача.
- •Задача.
- •Площадь равнобедренного треугольника
- •Углы равнобедренного треугольника
- •Высота равнобедренного треугольника
- •Окружность, вписанная в равнобедренный треугольник
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника (часть 2)
- •Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами
- •Периметр четырехугольника Задачи на нахождение периметра четырехугольника
- •Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника
- •Углы четырехугольника
- •Трапеция (задачи с диагоналями)
- •Прямоугольная трапеция
- •Равнобокая (равнобедренная) трапеция Углы равнобокой (равнобедренной) трапеции
- •Равнобокая трапеция
- •Равнобокая трапеция (часть 2)
- •Задача.
- •Трапеция, описанная вокруг окружности
- •Параллелограмм
- •Параллелограмм (часть 2) Задача
- •Площадь параллелограмма
- •Теоретический материал
- •Задачи на нахождение площади параллелограмма
- •Высота параллелограмма
- •Периметр и стороны прямоугольника Периметр и стороны прямоугольника Задача
- •Площадь прямоугольника
- •Тригонометрия
- •Тригонометрические соотношения в прямоугольном треугольнике
- •Теорема синусов
- •Теорема синусов
- •Доказательство теоремы синусов
- •Теорема синусов
- •Теорема синусов (часть 2)
- •Теорема косинусов Теорема косинусов. Доказательство.
- •Теорема косинусов
- •Многоугольники Понятие многоугольника
- •Свойства многоугольника
- •Сумма углов многоугольника
- •Теорема о сумме углов выпуклого многоугольника
- •Задача.
- •Решение.
- •Задача.
- •Решение.
- •Решение.
- •Решение
- •Правильный многоугольник
- •Стереометрия
- •Прямые и плоскости Параллельные плоскости
- •Параллельные плоскости (часть 2)
- •Перпендикулярные плоскости
- •Прямые на плоскости
- •Точка и плоскость
- •Отрезок, пересекающий плоскость
- •Параллелограмм, рассеченный плоскостью
- •Параллелограмм и плоскость
- •Перпендикуляр к квадрату
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Призма. Решение задач Призма с правильным треугольником в основании
- •Призма с правильным треугольником в основании (часть 2)
- •Призма с треугольником в основании
- •Призма с треугольником в основании ( часть 2)
- •Призма с треугольником в основании ( часть 3)
- •Правильный четырехугольник в основании призмы
- •Задача.
- •Параллелограмм в основании призмы
- •Ромб в основании призмы
- •Параллепипед
- •Параллелепипед (часть 2)
- •Пирамида. Решение задач Свойства правильной пирамиды
- •С треугольником в основании Тетраэдр (пирамида)
- •Пирамида с прямоугольным треугольником в основании Задача
- •Пирамида с равнобедренным треугольником в основании
- •Правильная пирамида
- •Правильная пирамида с четырехугольником в основании Правильная пирамида с четырехугольником в основании
- •Правильная пирамида с четырехугольником в основании (часть 2)
- •Правильная пирамида с четырехугольником в основании (часть 3)
- •Нахождение углов пирамиды
- •Нахождение величины наклона боковых граней правильной прамиды
- •Нахождение расстояний в правильной четырехугольной пирамиде
- •Правильная пирамида с треугольником в основании. Тетраэдр
- •Тетраэдр
- •Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
- •Правильная пирамида с треугольником в основании
- •Правильная пирамида с треугольником в основании (часть 2)
- •Правильная пирамида с треугольником в основании (часть 3)
- •Правильная пирамида с треугольником в основании (часть 4)
- •Правильный тетраэдр (пирамида)
- •Практические примеры
- •С четырехугольником в основании Пирамида
- •Неправильная пирамида с прямоугольником в основании
- •Неправильная пирамида с четырехугольником в основании
- •Сфера (шар). Решение задач. Сфера (Шар)
- •Площадь сферы
- •Цилиндр Цилиндр
- •Цилиндр и его сечения
- •Цилиндр и его сечения (часть 2)
- •Диагональ цилиндра
- •Площадь поверхности цилиндра
- •Конус Конус
- •Площадь боковой поверхности конуса
- •Объем конуса
- •Объем конуса (2)
Сумма углов треугольника
Задача. Один из углов треугольника на 30 градусов меньше другого и в 7 раз больше третьего.найти углы треугольника Решение. Сумма углов треугольника равна 180 градусам. Обозначим третий угол как х. Тогда другой относительно него будет равен (и в семь раз больше третьего) 7х, а первый (на тридцать градусов меньше другого, значит - другой на тридцать градусов больше), соответственно, 7х + 30 . Получим уравнение: х + 7х + ( 7х + 30 ) = 180 15х + 30 = 180 15х = 150 х=10 Находим остальные углы. 7х = 70, а 7х+30 = 100
Ответ: 10, 70, 100
Задача.
Из вершины прямого
угла треугольника АВС проведена высота
CD. Найти величину угла BCD если угол А
равен 65 градусам.
Решение. Исходя из того, что сумма углов треугольника равна 180 градусам, построим следующие рассуждения: Величины углов ∠A + ∠B + ∠C = 180° Так как угол С - прямой, то 65 + ∠B + 90 = 180 B = 25°
Теперь, поскольку CD - высота, то треугольник BCD - прямоугольный, откуда ∠CBD + ∠CDB + ∠BCD = 180° 25 + 90 + ∠BCD =180° ∠BCD =65°
Ответ: 65 градусов
Площадь треугольника
Примечание. Это урок с задачами по геометрии на нахождение площади треугольника. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Иногда для простых подкоренных выражений может использоваться символ √
Ниже приведены формулы нахождения площади произвольного треугольника. Если же треугольник обладает особыми свойствами, обратитесь также к специальным формулам - см. например "Формулы площади равнобедренного треугольника".
Площадь треугольника можно найти по следующим формулам:
Пояснения к формулам: a, b, c - длины сторон треугольника, площадь которого мы хотим найти r - радиус вписанной окружности R - радиус описанной окружности h - высота треугольника, опущенная на сторону p - полупериметр треугольника, 1/2 суммы его сторон
Например, формула 1 говорит, что площадь треугольника равна половине произведения высоты треугольника на длину стороны на которую эта высота опущена
Формула 2 говорит о том, что площадь треугольника равна половине произведения двух его сторон на синус угла между ними (см. пример решения ниже).
См. также площадь равнобедренного треугольника.
Задача
Стороны треугольника равны 5 и 6 см. Угол между ними составляет 60 градусов. Найдите площадь треугольника.
Решение.
Площадь трегольника равна S=1/2 ab sin C Соответственно S=1/2 *5*6*sin60 S=15√3 / 2
Примечание- sqrt используется вместо знака квадратного корня.
Ответ: 7,5 √3
Задача
Найти площадь равностороннего треугольника со стороной 3см.
Решение.
Площадь треугольника можно найти по формуле Герона: S = 1/4 sqrt( ( a + b + c)(b + c - a)(a + c - b)(a + b -c) )
Поскольку a = b = c формула площади равностороннего треугольника примет вид:
S = √3 / 4 * a2
S = √3 / 4 * 32
S = 9 √3 / 4
Ответ: 9 √3 / 4.
Задача
Во сколько раз увеличится площадь треугольника, если стороны увеличить в 4 раза?
Решение.
Используем формулу Герона.
S = 1/4 sqrt( ( a + b + c)(b + c - a)(a + c - b)(a + b -c) )
Если стороны увеличены в 4 раза, то
S2 = 1/4 sqrt( ( 4a + 4b + 4c)(4b + 4c - 4a)(4a + 4c - 4b)(4a + 4b -4c) )
Как видно, 4 - общий множитель, который можно вынести за скобки из всех четырех выражений. Тогда
S2 = 1/4 sqrt( 4 * 4 * 4 * 4 ( a + b + c)(b + c - a)(a + c - b)(a + b -c) ) S2 = 1/4 sqrt( 256 ( a + b + c)(b + c - a)(a + c - b)(a + b -c) ) S2 = 16 * 1/4 sqrt( ( a + b + c)(b + c - a)(a + c - b)(a + b -c) )
Теперь, определим соотношения площадей
S2 / S = 16
Ответ: Площадь треугольника увеличится в 16 раз