Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
решения задачь по геометрии из ЕНТ.doc
Скачиваний:
0
Добавлен:
29.12.2019
Размер:
1.12 Mб
Скачать

Перпендикуляр к квадрату

Задача. Расстояние от точки О до сторон квадрата равно 13 см. Найдите расстояние от точки О до плоскости квадрата, если сторона квадрата равна 10 см.

Решение.

Точка О, которая равноудалена от каждой из сторон квадрата будет проецироваться в точку пересечения его диагоналей (центр). Докажем это.

Опустим из точки О на плоскость квадрата перпендикуляр, который коснется плоскости квадрата в точке К. Теперь докажем равенство образовавшихся прямоугольных треугольников треугольников. Поскольку их гипотенузы равны по условию задачи, а один из катетов - общий, то вторые катеты также равны как следствие из теоремы Пифагора. Таким образом, точка К равноудалена от сторон квадрата и является его центром.

Поскольку сторона квадрата равна 10 см, то точка К удалена от каждой из них на 10/2 = 5 см . Из имеющегося прямоугольного треугольника с катетом 5 см и гипотенузой 13 см, найдем его катет (который и является расстоянием от точки О до плоскости квадрата. 

OK 2 = 132 - 5 2 OK = 12

Ответ: 12 см

Перпендикуляр к плоскости прямоугольного треугольника

Примечание. Текст задачи взят с форума.

Задача.

Катеты прямоугольного треугольника АВС равны 9 и 12 см. Через середину гипотенузы (точку О) провели перпендикуляр к плоскости треугольника, равный 6см. Найти расстояние от концов перпендикуляра до катетов.

Катети прямокутного трикутника АВС дорівнюють 9 і 12 см Через середину гіпотенузи (точку О) провели перпендикуляр до площини трикутника, рівний 6см. Знайти відстань від кінців перпендикуляра до катетів.

Решение.

Отобразим условие задачи на рисунке

Обратим внимание на то, что ON и OM являются перпендикулярами к катетам прямоугольного треугольника, поскольку нам необходимо найти расстояние KN и KM.

Рассмотрим отрезок NO. Он является перпендикуляром к CB. Угол ACB также вляется прямым по условию задачи. Таким образом, треугольники ABC и OBN  - подобны по признаку равенства углов (см. подобие треугольников). Угол В - общий, а, поскольку CA и NO являются перпендикулярами к CB - то остальные углы также равны (один прямой, второй равен 180 градусов минус сумма остальных углов, равенство которых мы уже доказали). 

Коэффициент подобия треугольников равен соотношению BO к BA. Поскольку точка О - точка касания медианы прямоугольного треугольника к гипотенузе, то есть AO = OB, то коэффициент подобия будет равен 1:2.

Откуда ON = CA / 2 = 9 / 2 = 4,5

Расстояние же KN найдем по теореме Пифагора.

KN = √(4,52 + 62 ) = 7,5 см

Аналогично, найдем расстояние до второго катета:

OM = CB / 2 = 12 / 2 = 6

 KN = √( 62 + 62 ) = √72 = 6√2 см 

Ответ:  7,5 см,  6√2 см   

Призма. Решение задач Призма с правильным треугольником в основании

Примечание. Здесь находятся задачи о призмах с правильным треугольником в основании. Если Вы не нашли решение интересующей Вас задачи, пишите об этом на форуме. Задача. Площадь боковой поверхности правильной треугольной призмы равна площади основания.Вычислите длину бокового ребра,если сторона основания 7см Решение. Площадь правильного треугольника в основании призмы находится по формуле: По условию задачи a = 7 см Так как площадь грани призмы в данном случае будет равна 7h, где h - высота бокового ребра, количество граней - три, то 49√3 / 4 = 3 * 7h 49√3 / 4 = 21h откуда h = 7√3 / 12 Ответ: длина бокового ребра правильной треугольной призмы равна 7√3 / 12 Задача. Высота правильной треугольной призмы равна h. Найдите объем призмы, если диагонали боковых граней, не исходящие из одной точки, перпендикулярны. Решение. Поскольку в основании призмі по условию лежит правильный треугольник, то все боковые грани в основании равны. Поскольку диагонали каждой из них пересекаются под прямым углом, то боковые грани представляют собой квадрат. Докажем это. Поскольку AD = BC как основания прямой призмы, углы BOC = AOD как вертикальные, а BCO = OAD, OBC = ODA как внутренние накрест лежащие при параллельных прямых AD и BC. То есть треугольники BOC и AOD  равны. Отсюда следует, что BO = OD, значит треугольники BOC  и COD также равны, у них смежная сторона OC, а углы COB = COD = 90 градусам. Из этого следует, что CD =BC = AD = AB. ABCD - квадрат Следовательно, объем призмы будет равен V = Sh Площадь основания - правильный треугольник. Откуда S = √3/4 h2 V = √3/4 h3 Ответ: √3/4 h3 .