
- •Отрезки и прямые
- •Отрезки в координатной плоскости
- •Задачи об отрезках на координатной плоскости
- •Прямые на координатной плоскости
- •Векторы
- •Пересекающиеся прямые
- •Окружности Окружность
- •Хорды на окружности
- •Треугольники
- •Высота Задача на подобие треугольников.
- •Задача на применение теоремы Пифагора.
- •Сумма углов треугольника
- •Площадь треугольника
- •Биссектриса Биссектриса Задача.
- •Задача.
- •Биссектриса углов треугольника
- •Биссектриса внешнего угла
- •Медиана треугольника Медиана треугольника. Нахождение длины
- •Нахождение площади через медианы
- •Угол между высотой и медианой треугольника
- •Медианы прямоугольного треугольника
- •Подобие треугольников. Первый признак подобия
- •Подобие треугольников. Третий признак подобия
- •Решение
- •Подобие треугольников. Использование в задачах
- •Прямоугольный треугольник Прямоугольный треугольник
- •Элементарные задачи
- •Биссектриса в прямоугольном треугольнике
- •Применение теоремы Пифагора
- •Высота в прямоугольном треугольнике
- •Высота в прямоугольном треугольнике (Часть 2)
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Равнобедренный треугольник Определение понятия
- •Свойства равнобедренного треугольника
- •Признаки равнобедренного треугольника
- •Площадь равнобедренного треугольника
- •Равнобедренный треугольник
- •Задача.
- •Задача.
- •Площадь равнобедренного треугольника
- •Углы равнобедренного треугольника
- •Высота равнобедренного треугольника
- •Окружность, вписанная в равнобедренный треугольник
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника (часть 2)
- •Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами
- •Периметр четырехугольника Задачи на нахождение периметра четырехугольника
- •Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника
- •Углы четырехугольника
- •Трапеция (задачи с диагоналями)
- •Прямоугольная трапеция
- •Равнобокая (равнобедренная) трапеция Углы равнобокой (равнобедренной) трапеции
- •Равнобокая трапеция
- •Равнобокая трапеция (часть 2)
- •Задача.
- •Трапеция, описанная вокруг окружности
- •Параллелограмм
- •Параллелограмм (часть 2) Задача
- •Площадь параллелограмма
- •Теоретический материал
- •Задачи на нахождение площади параллелограмма
- •Высота параллелограмма
- •Периметр и стороны прямоугольника Периметр и стороны прямоугольника Задача
- •Площадь прямоугольника
- •Тригонометрия
- •Тригонометрические соотношения в прямоугольном треугольнике
- •Теорема синусов
- •Теорема синусов
- •Доказательство теоремы синусов
- •Теорема синусов
- •Теорема синусов (часть 2)
- •Теорема косинусов Теорема косинусов. Доказательство.
- •Теорема косинусов
- •Многоугольники Понятие многоугольника
- •Свойства многоугольника
- •Сумма углов многоугольника
- •Теорема о сумме углов выпуклого многоугольника
- •Задача.
- •Решение.
- •Задача.
- •Решение.
- •Решение.
- •Решение
- •Правильный многоугольник
- •Стереометрия
- •Прямые и плоскости Параллельные плоскости
- •Параллельные плоскости (часть 2)
- •Перпендикулярные плоскости
- •Прямые на плоскости
- •Точка и плоскость
- •Отрезок, пересекающий плоскость
- •Параллелограмм, рассеченный плоскостью
- •Параллелограмм и плоскость
- •Перпендикуляр к квадрату
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Призма. Решение задач Призма с правильным треугольником в основании
- •Призма с правильным треугольником в основании (часть 2)
- •Призма с треугольником в основании
- •Призма с треугольником в основании ( часть 2)
- •Призма с треугольником в основании ( часть 3)
- •Правильный четырехугольник в основании призмы
- •Задача.
- •Параллелограмм в основании призмы
- •Ромб в основании призмы
- •Параллепипед
- •Параллелепипед (часть 2)
- •Пирамида. Решение задач Свойства правильной пирамиды
- •С треугольником в основании Тетраэдр (пирамида)
- •Пирамида с прямоугольным треугольником в основании Задача
- •Пирамида с равнобедренным треугольником в основании
- •Правильная пирамида
- •Правильная пирамида с четырехугольником в основании Правильная пирамида с четырехугольником в основании
- •Правильная пирамида с четырехугольником в основании (часть 2)
- •Правильная пирамида с четырехугольником в основании (часть 3)
- •Нахождение углов пирамиды
- •Нахождение величины наклона боковых граней правильной прамиды
- •Нахождение расстояний в правильной четырехугольной пирамиде
- •Правильная пирамида с треугольником в основании. Тетраэдр
- •Тетраэдр
- •Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
- •Правильная пирамида с треугольником в основании
- •Правильная пирамида с треугольником в основании (часть 2)
- •Правильная пирамида с треугольником в основании (часть 3)
- •Правильная пирамида с треугольником в основании (часть 4)
- •Правильный тетраэдр (пирамида)
- •Практические примеры
- •С четырехугольником в основании Пирамида
- •Неправильная пирамида с прямоугольником в основании
- •Неправильная пирамида с четырехугольником в основании
- •Сфера (шар). Решение задач. Сфера (Шар)
- •Площадь сферы
- •Цилиндр Цилиндр
- •Цилиндр и его сечения
- •Цилиндр и его сечения (часть 2)
- •Диагональ цилиндра
- •Площадь поверхности цилиндра
- •Конус Конус
- •Площадь боковой поверхности конуса
- •Объем конуса
- •Объем конуса (2)
Отрезок, пересекающий плоскость
Примечание. Это часть урока с задачами по геометрии (раздел плоскости). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√"
Задача
Отрезок АВ пересекает плоскость. Найти
расстояние от середины отрезка до
плоскости, если расстояния от точек А
и В до плоскости 6 см и 10 см.
Решение.
Пусть отрезок пересекает плоскость
в точке D, середину отрезка обозначим
как M. Перпендикуляр отрезка, опущенный
на плоскость (и определяющий расстояние
от середины отрезка до плоскости) пусть
касается плоскости в точке M1. Точки A и
B проецируются на плоскость соответственно
в точках A1 и B1.
Достроим отрезок AB до
треугольника ABK, где точка К лежит на
плоскости, параллельной исходной.
Найдем
длину отрезка MM1, который и будет
расстоянием от середины отрезка AB до
плоскости.
Учтем что MM1 = MC - M1C
Для
треугольника ВАВ1 по теореме Фалеса, МС
будет средней линией треугольника. То
есть
МС = ВВ1 / 2.
Для треугольника
АА1В1 отрезок М1С также является средней
линией.
Откуда
М1С = АА1/2
Так как ММ1 = МС – М1С
MM1 = ( BB1 −
AA1 ) / 2
Если AA1 ≥ BB1, путем аналогичных
рассуждений получим
MM1 = ( AA1 − BB1 ) / 2
То есть для общего случая
MM1 = | BB1 − AA1 | / 2
Подставим
значения:
MM1 = | 10 − 6 | / 2 = 2
Ответ:
2 см.
Параллелограмм, рассеченный плоскостью
Примечание. Это часть урока с
задачами по геометрии (раздел плоскости).
Если Вам необходимо решить задачу по
геометрии, которой здесь нет - пишите
об этом в форуме. В задачах вместо символа
"квадратный корень" применяется
функция sqrt(), в которой sqrt - символ
квадратного корня, а в скобках указано
подкоренное выражение. Для простых
подкоренных выражений может использоваться
знак "√"
Задача.
Дан
параллелограмм ABCD. Стороны параллелограмма
АВ и CD пересекают плоскость альфа в
точках М и К соответственно. Сторона
параллелограмма AD параллельна плоскости
альфа. AM:MB=3:5. Найдите CK и KD, если АВ=24см.
Решение.
Зная соотношение AM и MB, а также длину
отрезка AB. Найдем длину каждого из
отрезков. Пусть коэффициент
пропорциональности х, тогда
AB = 3x +
5x
24 = 3x + 5x
24 = 8x
x=3
Откуда
AM = 9 см, MB = 15 см.
Поскольку AD ||
плоскости α , то AD || MK, таким образом AMKD
также параллелограмм. Откуда KD = 9 см CK
= 15 см
Ответ: KD = 9 см CK = 15 см
Параллелограмм и плоскость
Задача. Расстояния от вершин A, B,C параллелограмма ABCD, не пересекающего плоскость α, до плоскости α равны соответственно 14 см, 11 см и 4 см. Найдите расстояние от вершины D до плоскости α. Решение. Обозначим как O точку пересечения диагоналей параллелограмма ABCD. Согласно свойствам параллелограмма, O - середина отрезка AC. Таким образом, Перпендикуляры к плоскости от точек A и C образуют трапецию, при чем перпендикуляр от О - будет ее средней линией. Из чего следует, что расстояние от точки O до плоскости M (средняя линия трапеции) полусумме расстояний от вершин A и C до плоскости (оснований трапеции). Средняя линия трапеции равна (14 + 4) / 2 = 9 С другой стороны, O - также является и серединой диагонали BD. Аналогично сказанному выше, также расстояние до плоскости является средней линией трапеции, образованной перпендикулярами от точек B и D на плоскость. Из чего следует, что средняя линия трапеции равна ( 11 + х ) / 2, где х - искомое расстояние от точки D до плоскости. Поскольку средняя линия трапеции в обоих случаях - это расстояние от точки О до плоскости, то ( 11 + х ) / 2 = 9 х = 7 Ответ: расстояние от точки D до плоскости равно 7 см.