
- •Отрезки и прямые
- •Отрезки в координатной плоскости
- •Задачи об отрезках на координатной плоскости
- •Прямые на координатной плоскости
- •Векторы
- •Пересекающиеся прямые
- •Окружности Окружность
- •Хорды на окружности
- •Треугольники
- •Высота Задача на подобие треугольников.
- •Задача на применение теоремы Пифагора.
- •Сумма углов треугольника
- •Площадь треугольника
- •Биссектриса Биссектриса Задача.
- •Задача.
- •Биссектриса углов треугольника
- •Биссектриса внешнего угла
- •Медиана треугольника Медиана треугольника. Нахождение длины
- •Нахождение площади через медианы
- •Угол между высотой и медианой треугольника
- •Медианы прямоугольного треугольника
- •Подобие треугольников. Первый признак подобия
- •Подобие треугольников. Третий признак подобия
- •Решение
- •Подобие треугольников. Использование в задачах
- •Прямоугольный треугольник Прямоугольный треугольник
- •Элементарные задачи
- •Биссектриса в прямоугольном треугольнике
- •Применение теоремы Пифагора
- •Высота в прямоугольном треугольнике
- •Высота в прямоугольном треугольнике (Часть 2)
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Равнобедренный треугольник Определение понятия
- •Свойства равнобедренного треугольника
- •Признаки равнобедренного треугольника
- •Площадь равнобедренного треугольника
- •Равнобедренный треугольник
- •Задача.
- •Задача.
- •Площадь равнобедренного треугольника
- •Углы равнобедренного треугольника
- •Высота равнобедренного треугольника
- •Окружность, вписанная в равнобедренный треугольник
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника (часть 2)
- •Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами
- •Периметр четырехугольника Задачи на нахождение периметра четырехугольника
- •Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника
- •Углы четырехугольника
- •Трапеция (задачи с диагоналями)
- •Прямоугольная трапеция
- •Равнобокая (равнобедренная) трапеция Углы равнобокой (равнобедренной) трапеции
- •Равнобокая трапеция
- •Равнобокая трапеция (часть 2)
- •Задача.
- •Трапеция, описанная вокруг окружности
- •Параллелограмм
- •Параллелограмм (часть 2) Задача
- •Площадь параллелограмма
- •Теоретический материал
- •Задачи на нахождение площади параллелограмма
- •Высота параллелограмма
- •Периметр и стороны прямоугольника Периметр и стороны прямоугольника Задача
- •Площадь прямоугольника
- •Тригонометрия
- •Тригонометрические соотношения в прямоугольном треугольнике
- •Теорема синусов
- •Теорема синусов
- •Доказательство теоремы синусов
- •Теорема синусов
- •Теорема синусов (часть 2)
- •Теорема косинусов Теорема косинусов. Доказательство.
- •Теорема косинусов
- •Многоугольники Понятие многоугольника
- •Свойства многоугольника
- •Сумма углов многоугольника
- •Теорема о сумме углов выпуклого многоугольника
- •Задача.
- •Решение.
- •Задача.
- •Решение.
- •Решение.
- •Решение
- •Правильный многоугольник
- •Стереометрия
- •Прямые и плоскости Параллельные плоскости
- •Параллельные плоскости (часть 2)
- •Перпендикулярные плоскости
- •Прямые на плоскости
- •Точка и плоскость
- •Отрезок, пересекающий плоскость
- •Параллелограмм, рассеченный плоскостью
- •Параллелограмм и плоскость
- •Перпендикуляр к квадрату
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Призма. Решение задач Призма с правильным треугольником в основании
- •Призма с правильным треугольником в основании (часть 2)
- •Призма с треугольником в основании
- •Призма с треугольником в основании ( часть 2)
- •Призма с треугольником в основании ( часть 3)
- •Правильный четырехугольник в основании призмы
- •Задача.
- •Параллелограмм в основании призмы
- •Ромб в основании призмы
- •Параллепипед
- •Параллелепипед (часть 2)
- •Пирамида. Решение задач Свойства правильной пирамиды
- •С треугольником в основании Тетраэдр (пирамида)
- •Пирамида с прямоугольным треугольником в основании Задача
- •Пирамида с равнобедренным треугольником в основании
- •Правильная пирамида
- •Правильная пирамида с четырехугольником в основании Правильная пирамида с четырехугольником в основании
- •Правильная пирамида с четырехугольником в основании (часть 2)
- •Правильная пирамида с четырехугольником в основании (часть 3)
- •Нахождение углов пирамиды
- •Нахождение величины наклона боковых граней правильной прамиды
- •Нахождение расстояний в правильной четырехугольной пирамиде
- •Правильная пирамида с треугольником в основании. Тетраэдр
- •Тетраэдр
- •Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
- •Правильная пирамида с треугольником в основании
- •Правильная пирамида с треугольником в основании (часть 2)
- •Правильная пирамида с треугольником в основании (часть 3)
- •Правильная пирамида с треугольником в основании (часть 4)
- •Правильный тетраэдр (пирамида)
- •Практические примеры
- •С четырехугольником в основании Пирамида
- •Неправильная пирамида с прямоугольником в основании
- •Неправильная пирамида с четырехугольником в основании
- •Сфера (шар). Решение задач. Сфера (Шар)
- •Площадь сферы
- •Цилиндр Цилиндр
- •Цилиндр и его сечения
- •Цилиндр и его сечения (часть 2)
- •Диагональ цилиндра
- •Площадь поверхности цилиндра
- •Конус Конус
- •Площадь боковой поверхности конуса
- •Объем конуса
- •Объем конуса (2)
Параллельные плоскости (часть 2)
Примечание. Это часть урока с задачами по геометрии (раздел плоскости). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√"
Задача
Через точку К, не лежащую между
параллельными плоскостями альфа и бета,
проведены прямые а и b. Прямая а пересекает
плоскость альфа в точке А1 а плоскость
бета в точке А2, и прямая b пересекает
эти плоскости в точках B1 и B2 соответственно.
Найти KB2 если A2B2 относится к A1B1 как
4:3, а KB1 = 14 см.
Решение.
Через прямые a и b проведем
плоскость, образованную этими
пересекающимися прямыми. В этой
плоскости лежат треугольники A2KB2 и
A1KB1. Эти треугольники подобны, так как
угол К у них общий, а остальные углы
также равны, так как образованы секущими
KA2 и KB2 на параллельных прямых A1B1 и A2B2,
так как плоскости альфа и бета -
параллельны.
Таким образом,
коэффициент подобия верен для соотношения
любых двух соответствующих сторон, то
есть:
KB2 : KB1 = 4:3
Откуда
KB2 :
14 = 4:3
KB2 = 14 * 4 / 3 = 56/3 = 18 2/3 см
Ответ:
18 2/3 см
Перпендикулярные плоскости
Задача. Точка A находится на расстоянии 1 см до одной из двух перпендикулярных плоскостей. Найдите расстояние от точки A до второй плоскости, если расстояние от A до прямой их пересечения равно √5 см. Решение. Проведем перпендикуляр от точки А также и ко второй плоскости. Перпендикуляры к плоскостям от точки А, а также расстояния от них до прямой пересечения плоскостей образуют прямоугольник, диагональ которого является расстоянием от точки А до прямой пересечения плоскостей и равна по условию √5 см. Поскольку длина одного перпендикуляра, являющегося стороной прямоугольника, нам известна, то длину второго перпендикуляра найдем как сторону прямоугольника: х2 + 1 = 5 х2 = 4 x = 2 Ответ: расстояние от точки А до второй плоскости равно 2 см.
Прямые на плоскости
Примечание. Это часть урока с задачами по геометрии (раздел прямые на плоскости). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме.
Задача
Две прямые а и в пересекаются в точке О.Докажите,что все прямые,которые проходят не через точку О и пересекают каждую из данных прямых, лежат в одной плоскости. Доказательство. Пусть прямая, не пересекающая точку О пересекает каждую из данных прямых. Поскольку обе данные прямые лежат в одной плоскости, то все точки, принадлежащие данным прямым, равно как и точки пересечения с третьей прямой лежат в одной плоскости. Воспользуемся аксиомой стереометрии: "Если две точки прямой лежат на одной плоскости, то все точки данной прямой лежат в этой плоскости." Откуда проведенная нами прямая также лежит в данной плоскости.
Точка и плоскость
Задача.
Расстояние от некоторой
точки до плоскости квадрата равно 4 см,
а до каждой из его сторон 6 см.
Найдите
диагональ квадрата.
Решение.
Расстояния от точки до углов квадрата
образуют правильную пирамиду.
Таким
образом, OKC является прямоугольным
треугольником. Откуда
KC2 + OK2
= OC2
KC2 = OC2 - OK2
KC2 = 36 - 16
KC = √20 = 2√5
Откуда
диагональ квадрата равна KC * 2 = 4√5
Ответ: 4√5
Задача.
Из O -центра равностороннего
треугольника ABC проведен перпендикуляр
OM к плоскости треугольника ABC.
Найдите
длину OM, если BC=6см, а MC=4см.
Решение.
Точка М вместе с правильным
треугольником образует правильную
пирамиду, поскольку ее вершина проецируется
в центр основания.
МОС - прямоугольный
треугольник. Поскольку ABC - правильный
треугольник, а О - является его центром,
то OC будет равно длине радиуса описанной
окружности. Длину радиуса описанной
окружности найдем как
R = a √3 / 3
OC
= BC√3 / 3
OC = 6√3 / 3 = 2√3
Откуда
OM2 + OC2 = MC2
OM2
= MC2 - OC2
OM2 = 16 -
12
OM = 2
Ответ: 2 см