
- •Отрезки и прямые
- •Отрезки в координатной плоскости
- •Задачи об отрезках на координатной плоскости
- •Прямые на координатной плоскости
- •Векторы
- •Пересекающиеся прямые
- •Окружности Окружность
- •Хорды на окружности
- •Треугольники
- •Высота Задача на подобие треугольников.
- •Задача на применение теоремы Пифагора.
- •Сумма углов треугольника
- •Площадь треугольника
- •Биссектриса Биссектриса Задача.
- •Задача.
- •Биссектриса углов треугольника
- •Биссектриса внешнего угла
- •Медиана треугольника Медиана треугольника. Нахождение длины
- •Нахождение площади через медианы
- •Угол между высотой и медианой треугольника
- •Медианы прямоугольного треугольника
- •Подобие треугольников. Первый признак подобия
- •Подобие треугольников. Третий признак подобия
- •Решение
- •Подобие треугольников. Использование в задачах
- •Прямоугольный треугольник Прямоугольный треугольник
- •Элементарные задачи
- •Биссектриса в прямоугольном треугольнике
- •Применение теоремы Пифагора
- •Высота в прямоугольном треугольнике
- •Высота в прямоугольном треугольнике (Часть 2)
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Равнобедренный треугольник Определение понятия
- •Свойства равнобедренного треугольника
- •Признаки равнобедренного треугольника
- •Площадь равнобедренного треугольника
- •Равнобедренный треугольник
- •Задача.
- •Задача.
- •Площадь равнобедренного треугольника
- •Углы равнобедренного треугольника
- •Высота равнобедренного треугольника
- •Окружность, вписанная в равнобедренный треугольник
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника (часть 2)
- •Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами
- •Периметр четырехугольника Задачи на нахождение периметра четырехугольника
- •Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника
- •Углы четырехугольника
- •Трапеция (задачи с диагоналями)
- •Прямоугольная трапеция
- •Равнобокая (равнобедренная) трапеция Углы равнобокой (равнобедренной) трапеции
- •Равнобокая трапеция
- •Равнобокая трапеция (часть 2)
- •Задача.
- •Трапеция, описанная вокруг окружности
- •Параллелограмм
- •Параллелограмм (часть 2) Задача
- •Площадь параллелограмма
- •Теоретический материал
- •Задачи на нахождение площади параллелограмма
- •Высота параллелограмма
- •Периметр и стороны прямоугольника Периметр и стороны прямоугольника Задача
- •Площадь прямоугольника
- •Тригонометрия
- •Тригонометрические соотношения в прямоугольном треугольнике
- •Теорема синусов
- •Теорема синусов
- •Доказательство теоремы синусов
- •Теорема синусов
- •Теорема синусов (часть 2)
- •Теорема косинусов Теорема косинусов. Доказательство.
- •Теорема косинусов
- •Многоугольники Понятие многоугольника
- •Свойства многоугольника
- •Сумма углов многоугольника
- •Теорема о сумме углов выпуклого многоугольника
- •Задача.
- •Решение.
- •Задача.
- •Решение.
- •Решение.
- •Решение
- •Правильный многоугольник
- •Стереометрия
- •Прямые и плоскости Параллельные плоскости
- •Параллельные плоскости (часть 2)
- •Перпендикулярные плоскости
- •Прямые на плоскости
- •Точка и плоскость
- •Отрезок, пересекающий плоскость
- •Параллелограмм, рассеченный плоскостью
- •Параллелограмм и плоскость
- •Перпендикуляр к квадрату
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Призма. Решение задач Призма с правильным треугольником в основании
- •Призма с правильным треугольником в основании (часть 2)
- •Призма с треугольником в основании
- •Призма с треугольником в основании ( часть 2)
- •Призма с треугольником в основании ( часть 3)
- •Правильный четырехугольник в основании призмы
- •Задача.
- •Параллелограмм в основании призмы
- •Ромб в основании призмы
- •Параллепипед
- •Параллелепипед (часть 2)
- •Пирамида. Решение задач Свойства правильной пирамиды
- •С треугольником в основании Тетраэдр (пирамида)
- •Пирамида с прямоугольным треугольником в основании Задача
- •Пирамида с равнобедренным треугольником в основании
- •Правильная пирамида
- •Правильная пирамида с четырехугольником в основании Правильная пирамида с четырехугольником в основании
- •Правильная пирамида с четырехугольником в основании (часть 2)
- •Правильная пирамида с четырехугольником в основании (часть 3)
- •Нахождение углов пирамиды
- •Нахождение величины наклона боковых граней правильной прамиды
- •Нахождение расстояний в правильной четырехугольной пирамиде
- •Правильная пирамида с треугольником в основании. Тетраэдр
- •Тетраэдр
- •Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
- •Правильная пирамида с треугольником в основании
- •Правильная пирамида с треугольником в основании (часть 2)
- •Правильная пирамида с треугольником в основании (часть 3)
- •Правильная пирамида с треугольником в основании (часть 4)
- •Правильный тетраэдр (пирамида)
- •Практические примеры
- •С четырехугольником в основании Пирамида
- •Неправильная пирамида с прямоугольником в основании
- •Неправильная пирамида с четырехугольником в основании
- •Сфера (шар). Решение задач. Сфера (Шар)
- •Площадь сферы
- •Цилиндр Цилиндр
- •Цилиндр и его сечения
- •Цилиндр и его сечения (часть 2)
- •Диагональ цилиндра
- •Площадь поверхности цилиндра
- •Конус Конус
- •Площадь боковой поверхности конуса
- •Объем конуса
- •Объем конуса (2)
Решение.
Для решения данной задачи воспользуемся теоремой о сумме внешних углов выпуклого многоугольника.
Теорема гласит: Для выпуклого n-угольника сумма всех внешних углов равна 360°.
Таким образом,
3*(180-113)+(n-3)x=360
правая часть выражения - сумма внешних углов, в левой части сумма трех углов известна по условию, а градусная мера остальных (их количество, соответственно n-3, так как три угла известны) обозначена как x.
201+(n-3)x=360
(n-3)x=159
159 раскладывается только на два множителя 53 и 3, при чем 53 - простое число. То есть других пар множителей не существует.
Таким образом, n-3 = 3, n=6, то есть количество углов многоугольника - шесть.
Ответ: шесть углов
Задача
Докажите, что у выпуклого многоугольника может быть не более трех острых углов.
Решение
Как известно, сумма внешних углов выпуклого многоугольника равна 3600. Проведем доказательство от противного. Если у выпуклого многоугольника не менее четырех острых внутренних углов, следовательно среди его внешних углов не менее четырех тупых, откуда следует, что сумма всех внешних углов многоугольника больше 4*900 = 3600. Имеем противоречие. Утверждение доказано.
Правильный многоугольник
Задача.
Найдите количество сторон
правильного многоугольника,центральный
угол которого равен:
1)120°
2)60°
3)72°
Решение.
Центральный
угол - это угол, образованный двумя
радиусами.
Так
как многоугольник является правильным,
все его стороны равны и все треугольники,
которые образованы центром многоугольника
и его углами - равны. Таким образом, все
центральные углы также равны.
Общая
мера суммы всех центральных углов равна
360 градусов.
Таким образом,
количество сторон правильного
многоугольника, исходя из градусной
меры центрального угла будет равна:
1)
360 / 120 = 3 (правильный треугольник)
2)
360 / 60 = 6 (правильный шестиугольник)
3)
360 / 72 = 5 (правильный пятиугольник)
Ответ:
3; 6; 5 сторон.
Стереометрия
Куб
Примечание. Это часть урока с задачами по геометрии (раздел стереометрия, задачи о кубе). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√". Задача. Площадь полной поверхности куба равна 24 см2. Найдите его объем. Решение. Поскольку куб имеет шесть одинаковых сторон, найдем площадь одной из них. 24 / 6 = 4 см2 Зная площадь стороны (основания) куба, найдем величину ребра a = √4 = 2 см Откуда его объем равен S = a3 = 23 = 8 см3 . Ответ: 8 см3 .
Прямые и плоскости Параллельные плоскости
Примечание. Это часть урока с задачами по геометрии (раздел плоскости). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√"
Задача
Луч KM пересекает параллельные плоскости α и β в точках M1 и М2, а луч КР- в точках Р1 и Р2 соответственно. Вычислите длину отрезка М1М2 , если КМ1 = 8см. М1 Р1 : М2 Р2 = 4 : 9 Решение. Совершив геометрические построения, согласно условию задачи, увидим, что у нас образовались треугольники KM1P1 и KM2P2 . У них общий угол K, а, поскольку плоскости α и β параллельны, то прямые М1 Р1 и М2 Р2 , лежащие на этих плоскостях, также параллельны. Поскольку параллельные прямые, пересекающие третью, образуют с ней равные углы, то треугольники KM1P1 и KM2P2 - подобны по трем углам. То есть имеют равные углы. Поскольку треугольники KM1P1 и KM2P2 подобны, то М1 Р1 / М2 Р2 = КМ1 / KМ2 Обозначим KМ2 как х. Таким образом : 4 / 9 = 8 / x 4x = 72 x = 18 Ответ: 18 см
Задача
Через точку О, лежащую между параллельными
плоскостями α и β, проведены прямые l и
m. Прямая l пересекает плоскость A и B в
точках А1и А2 соответственно, прямая m -
в точках В1 и В2. Найти длину отрезка
А2В2, если А1В1 = 12см, В1О:ОВ2 = 3:4
Решение.
Через прямые А1А2 и В1В2 можно повести
плоскость, которая пересечёт параллельные
плоскости по параллельным прямым А1В1
и А2В2.
У образовавшихся треугольников
ОА1В1 и ОА2В2 соответствующие углы равны.
Углы при вершине О равны как вертикальные,
а остальные - как внутренние накрест
лежащие у параллельных прямых.
Следовательно треугольники ОА1В1 и ОА2В2
подобны.
У подобных треугольников
соответствующие стороны соотностятся
через коэффициент подобия.
Откуда:
ОВ1:ОВ2 = А1В1:А2В2,
Следовательно:
А2В2 = 4 * 12 / 3 = 16
Ответ:
16 см.