
- •Отрезки и прямые
- •Отрезки в координатной плоскости
- •Задачи об отрезках на координатной плоскости
- •Прямые на координатной плоскости
- •Векторы
- •Пересекающиеся прямые
- •Окружности Окружность
- •Хорды на окружности
- •Треугольники
- •Высота Задача на подобие треугольников.
- •Задача на применение теоремы Пифагора.
- •Сумма углов треугольника
- •Площадь треугольника
- •Биссектриса Биссектриса Задача.
- •Задача.
- •Биссектриса углов треугольника
- •Биссектриса внешнего угла
- •Медиана треугольника Медиана треугольника. Нахождение длины
- •Нахождение площади через медианы
- •Угол между высотой и медианой треугольника
- •Медианы прямоугольного треугольника
- •Подобие треугольников. Первый признак подобия
- •Подобие треугольников. Третий признак подобия
- •Решение
- •Подобие треугольников. Использование в задачах
- •Прямоугольный треугольник Прямоугольный треугольник
- •Элементарные задачи
- •Биссектриса в прямоугольном треугольнике
- •Применение теоремы Пифагора
- •Высота в прямоугольном треугольнике
- •Высота в прямоугольном треугольнике (Часть 2)
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Равнобедренный треугольник Определение понятия
- •Свойства равнобедренного треугольника
- •Признаки равнобедренного треугольника
- •Площадь равнобедренного треугольника
- •Равнобедренный треугольник
- •Задача.
- •Задача.
- •Площадь равнобедренного треугольника
- •Углы равнобедренного треугольника
- •Высота равнобедренного треугольника
- •Окружность, вписанная в равнобедренный треугольник
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника
- •Окружность, описанная вокруг треугольника (часть 2)
- •Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами
- •Периметр четырехугольника Задачи на нахождение периметра четырехугольника
- •Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника
- •Углы четырехугольника
- •Трапеция (задачи с диагоналями)
- •Прямоугольная трапеция
- •Равнобокая (равнобедренная) трапеция Углы равнобокой (равнобедренной) трапеции
- •Равнобокая трапеция
- •Равнобокая трапеция (часть 2)
- •Задача.
- •Трапеция, описанная вокруг окружности
- •Параллелограмм
- •Параллелограмм (часть 2) Задача
- •Площадь параллелограмма
- •Теоретический материал
- •Задачи на нахождение площади параллелограмма
- •Высота параллелограмма
- •Периметр и стороны прямоугольника Периметр и стороны прямоугольника Задача
- •Площадь прямоугольника
- •Тригонометрия
- •Тригонометрические соотношения в прямоугольном треугольнике
- •Теорема синусов
- •Теорема синусов
- •Доказательство теоремы синусов
- •Теорема синусов
- •Теорема синусов (часть 2)
- •Теорема косинусов Теорема косинусов. Доказательство.
- •Теорема косинусов
- •Многоугольники Понятие многоугольника
- •Свойства многоугольника
- •Сумма углов многоугольника
- •Теорема о сумме углов выпуклого многоугольника
- •Задача.
- •Решение.
- •Задача.
- •Решение.
- •Решение.
- •Решение
- •Правильный многоугольник
- •Стереометрия
- •Прямые и плоскости Параллельные плоскости
- •Параллельные плоскости (часть 2)
- •Перпендикулярные плоскости
- •Прямые на плоскости
- •Точка и плоскость
- •Отрезок, пересекающий плоскость
- •Параллелограмм, рассеченный плоскостью
- •Параллелограмм и плоскость
- •Перпендикуляр к квадрату
- •Перпендикуляр к плоскости прямоугольного треугольника
- •Призма. Решение задач Призма с правильным треугольником в основании
- •Призма с правильным треугольником в основании (часть 2)
- •Призма с треугольником в основании
- •Призма с треугольником в основании ( часть 2)
- •Призма с треугольником в основании ( часть 3)
- •Правильный четырехугольник в основании призмы
- •Задача.
- •Параллелограмм в основании призмы
- •Ромб в основании призмы
- •Параллепипед
- •Параллелепипед (часть 2)
- •Пирамида. Решение задач Свойства правильной пирамиды
- •С треугольником в основании Тетраэдр (пирамида)
- •Пирамида с прямоугольным треугольником в основании Задача
- •Пирамида с равнобедренным треугольником в основании
- •Правильная пирамида
- •Правильная пирамида с четырехугольником в основании Правильная пирамида с четырехугольником в основании
- •Правильная пирамида с четырехугольником в основании (часть 2)
- •Правильная пирамида с четырехугольником в основании (часть 3)
- •Нахождение углов пирамиды
- •Нахождение величины наклона боковых граней правильной прамиды
- •Нахождение расстояний в правильной четырехугольной пирамиде
- •Правильная пирамида с треугольником в основании. Тетраэдр
- •Тетраэдр
- •Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
- •Правильная пирамида с треугольником в основании
- •Правильная пирамида с треугольником в основании (часть 2)
- •Правильная пирамида с треугольником в основании (часть 3)
- •Правильная пирамида с треугольником в основании (часть 4)
- •Правильный тетраэдр (пирамида)
- •Практические примеры
- •С четырехугольником в основании Пирамида
- •Неправильная пирамида с прямоугольником в основании
- •Неправильная пирамида с четырехугольником в основании
- •Сфера (шар). Решение задач. Сфера (Шар)
- •Площадь сферы
- •Цилиндр Цилиндр
- •Цилиндр и его сечения
- •Цилиндр и его сечения (часть 2)
- •Диагональ цилиндра
- •Площадь поверхности цилиндра
- •Конус Конус
- •Площадь боковой поверхности конуса
- •Объем конуса
- •Объем конуса (2)
Трапеция (задачи с диагоналями)
Примечание. В данном уроке
приведено решение задач по геометрии
о трапециях. Если Вы не нашли решение
задачи по геометрии, интересующего Вас
типа - задайте вопрос на форуме.
Задача.
Диагонали трапеции
ABCD (AD | | ВС) пересекаются в точке О. Найдите
длину основания ВС трапеции, если
основание АD = 24 см, длина АО = 9см, длина
ОС = 6 см.
Решение.
Решение
данной задачи по идеологии абсолютно
идентично предыдущим задачам.
Треугольники AOD и BOC являются
подобными по трем углам - AOD и BOC являются
вертикальными, а остальные углы попарно
равны, поскольку образованы пересечением
одной прямой и двух параллельных прямых.
Поскольку треугольники подобны,
то все их геометрические размеры
относятся между собой, как геометрически
размеры известных нам по условию задачи
отрезков AO и OC. То есть
AO / OC = AD /
BC
9 / 6 = 24 / BC
BC = 24 * 6 / 9 = 16
Ответ:
16 см
Задача.
В трапеции
ABCD известно, что AD=24, ВС=8, АС=13, BD=5√17.
Найдите площадь трапеции.
Решение.
Для нахождения высоты трапеции из
вершин меньшего основания B и C опустим
на большее основание две высоты. Поскольку
трапеция неравнобокая - то обозначим
длину AM = a, длину KD = b (не путать
с обозначениями в формуле нахождения
площади трапеции). Поскольку основания
трапеции параллельны, а мы опускали две
высоты, перпендикулярных большему
основанию, то MBCK - прямоугольник.
Значит
AD = AM+BC+KD
a + 8 + b = 24
a = 16 - b
Треугольники DBM и ACK - прямоугольные,
так их прямые углы образованы высотами
трапеции. Обозначим высоту трапеции
через h. Тогда по теореме Пифагора
h2
+ (24 - a)2 = (5√17)2
и
h2
+ (24 - b)2 = 132
Учтем, что
a = 16 - b , тогда в первом уравнении
h2
+ (24 - 16 + b)2 = 425
h2 = 425 -
(8 + b)2
Подставим значение
квадрата высоты во второе уравнение,
полученное по Теореме Пифагора. Получим:
425 - (8 + b)2 + (24 - b)2 = 169
-(64 + 16b + b)2 + (24 - b)2 = -256
-64
- 16b - b2 + 576 - 48b + b2 = -256
-64b
= -768
b = 12
Таким образом, KD = 12
Откуда
h2 = 425 - (8 + b)2
= 425 - (8 + 12)2 = 25
h = 5
Найдем
площадь трапеции через ее высоту и
полусумму оснований
,
где a b - основания трапеции, h - высота
трапеции
S = (24 + 8) * 5 / 2 = 80 см2
Ответ: площадь трапеции равна
80 см2.
Прямоугольная трапеция
Примечание. Это часть урока с задачами по геометрии (раздел прямоугольная трапеция). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√"
Задача
В прямоугольной трапеции большая боковая сторона равна сумме оснований, высота равна 12 см. Найдите площадь прямоугольника, стороны которого равны основаниям трапеции. Решение. Обозначим трапецию как ABCD. Обозначим длины оснований трапеции как a (большее основание AD) и b (меньшее основание BC). Пусть прямым углом будет ∠A. Площадь прямоугольника, стороны которого равны основаниям трапеции, будет равна S = ab Из вершины C верхнего основания трапеции ABCD опустим на нижнее основание высоту CK. Высота трапеции известна по условию задачи. Тогда, по теореме Пифагора CK2 + KD2 = CD2 Поскольку большая боковая сторона трапеции по условию равна сумме оснований, то CD = a + b Поскольку трапеция прямоугольная, то высота, проведенная из верхнего основания трапеции разбивает нижнее основание на два отрезка AD = AK + KD. Величина первого отрезка равна меньшему основанию трапеции, так как высота образовала прямоугольник ABCK, то есть BC = AK = b, следовательно, KD будет равен разности длин оснований прямоугольной трапеции KD = a - b. то есть 122 + (a - b)2 = (a + b)2 откуда 144 + a2 - 2ab + b2 = a2 + 2ab + b2 144 = 4ab Поскольку площадь прямоугольника S = ab (см. выше), то 144 = 4S S = 144 / 4 = 36 Ответ: 36 см2 .