Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
решения задачь по геометрии из ЕНТ.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.12 Mб
Скачать

Существование четырехугольника Задачи о возможности существования четырехугольника с заданными сторонами

Задача.

Существует ли четырехугольник, если дл:ины сторон 1 см, 3 см, 5 см, 9 см?

Решение.

Для того, чтобы четырехугольник существовал, необходимо, чтобы длина одной из его сторон была меньше, чем сумма длин трех остальных сторон, иначе будет невозможно замкнуть периметр.

Для проверки возьмем наибольшую из сторон (9 см). Тогда сумма остальных составит 1+3+5 = 9 см. Это означает, что длины этих сторон либо должны быт отложены как часть отрезка (9 см) большей стороны, либо такую фигуру замкнуть невозможно. Вывод: такой четырехугольник существовать не может.

Ответ: Нет не существует.

Задача.

Существует ли четырехугольник, если дл:ины сторон 5 см, 17 см, 3 см, 7 см?

Решение.

Для того, чтобы четырехугольник существовал, необходимо, чтобы длина одной из его сторон была меньше, чем сумма длин трех остальных сторон, иначе будет невозможно замкнуть периметр.

Для проверки возьмем наибольшую из сторон (17 см). Тогда сумма остальных составит 7+3+5 = 15 см. Это означает, что такую фигуру замкнуть невозможно. Вывод: такой четырехугольник существовать не может.

Ответ: Нет не существует.

Периметр четырехугольника Задачи на нахождение периметра четырехугольника

Задача.

Найдите стороны четырехугольника, если его периметр равен 66 см, а одна из сторон больше второй на 8 см и на столько же меньше третьей, а четвертая - в три раза больше второй.

Решение.

Периметр четырехугольника равен сумме длин каждой из его сторон. Для решения задачи обозначим меньшую (!) сторону четырехугольника через x. Для понимания решения, пусть названия сторон будут A, B, C и D. Тогда

A = х + 8 (Одна из сторон четырехугольника, пусть это будет сторона A, больше второй, пусть это будет сторона B на 8 см, соответственно длина меньшей стороны будет x)

B  =  x  (Одна из сторон четырехугольника, пусть это будет сторона A, больше этой стороны на 8 см)

C = x + 16 (... "и на столько же меньше третьей". То есть, если длина стороны A = x + 8, а она меньше третьей на 8 см, то длина стороны C четырехугольника составит x + 16 см)

D = 3x (Длина этой стороны четырехугольника по условию в три раза больше второй)

Соответственно, периметр четырехугольника равен:

P= A + B + C + D

(x + 8) + x + (x + 16) + 3x = 66

6x + 24 = 66

6x = 42

x=7

Соответственно, длины сторон четырехугольника в задаче равны 7, 15, 23, 21

Ответ: 7 см, 15 см, 23 см, 21 см

Окружности, вписанные и описанные вокруг четырехугольника Окружность, описанная вокруг четырехугольника

Задача.

Можно ли описать окружность вокруг четырехугольника, если его углы, расположенные последовательно, равны 138, 44, 52, 126 градусов?

Решение.

Для решения задачи воспользуемся теоремой об углах четырехугольника, и окружности, описанной вокруг него, которая гласит: "Сумма противолежащих углов вписанного четырехугольника равна 180 градусам". Или другие формулировки: "Сумма противолежащих углов вписанного в окружность четырехугольника равна 180 градусам" или "Сумма противолежащих углов четырехугольника, вокруг которого описана окружность, равна 180 градусам".

Поскольку нам дана четкая последовательность углов, то они разбиваются на пары 138 и 52, а также 44 и 126 градусов. Если вокруг данного четырехугольника можно описать окружность, то сумма каждой пары должна составить 180 градусов.

44 + 126 = 170

138 + 52 = 190

Таким образом, вокруг данного четырехугольника невозможно описать окружность.

Ответ: нет

Задача.

В окружность вписан прямоугольник со сторонами 32см и 24см. Найдите радиус окружности.

Решение.

Центр окружности, описанной вокруг прямоугольника лежит на пересечении диагоналей. Точка пересечения диагоналей делит их пополам.

Стороны прямоугольника образуют с диагональю прямоугольный треугольник. Таким образом, по теореме Пифагора, длина диагонали прямоугольника будет равна:

d 2 = 322 + 242

d 2 = 1600

d = 40

Таким образом, центр описанной окружности вокруг прямоугольника лежит на середине диагонали, значит R = 40 / 2 = 20

Ответ: Радиус описанной вокруг прямоугольника окружности равен 20 см.