- •1. Естествознание и ценностные ориентиры общества
- •4. Дифференциация и интеграция наук
- •10. Теории науки к.Поппера, т. Куна, и. Лакатоса.
- •12. Средства научного познания
- •13. Научная картина мира
- •15. Борьба геоцентрических и гелиоцентрических картин мира.
- •25. Классический и вероятностный детерминизм
- •28. Универсальный эволюционизм
- •29.Симметрия и асимметрия в природе
- •30.Создание космологических моделей Вселенной
- •31. Стандартная модель эволюции Вселенной.
- •33)Элементарные частицы и силы в природе
- •35)Создание квантовой механики. Корпускулярно-волновой дуализм.
- •37) Материя. Движение материи
- •38) Уровни организации материального мира
- •39. Предмет познания и проблемное поле химической науки
- •40) Уровни химического знания
- •42. Концепции происхождения жизни
- •3. Теория самопроизвольного зарождения
- •4. Теория панспермии
- •45. Эволюционная теория Дарвина -- Уоллеса
- •46.Биосфера как система жизни.
- •47.Учение Вернадского о биосфере.
- •48.Экологический подход к биологическим системам.
- •49.Экологические системы и экологические взаимоотношения.
- •51.Основные этапы эволюции человека.
- •52.Концепции происхождения человека.
- •53.Сознание человека.Сознательное и бессознательное
- •54.Интегральная природа человека.
- •55.Ноосфера:понятие и основные компоненты.
- •56.Концепция коэволюционного развития биосфераы и человечества.
- •57.Альтернативные модели достижения гармонии отношений человека и природы.
- •58.Социально-этические проблемы генной инженерии.
- •59.Развитие новых технологий и окружающая среда.
- •60.Освоение космоса как новый этап развития человечества.
- •61.Глобальные проблемы современного общества.
- •62.Концепция устойчивого развития как способ рещенмя экологических проблем.
4. Теория панспермии
Пастера справедливо считают отцом науки о простейших организмах - микробиологии. Благодаря его работам был дан толчок к обширнейшим исследованиям невидимого простым глазом мира мельчайших существ, населяющих землю, воду и воздух. Эти исследования уже не были направлены, как раньше, на одно только описание форм микроорганизмов; бактерии, дрожжи, инфузории, амебы и т. д. изучались и с точки зрения условий их жизни, их питания, дыхания, размножения, с точки зрения тех изменений, которые они производят в окружающей их среде, и, наконец, с точки зрения их внутренней структуры, их тончайшего строения. Чем дальше шли эти исследования, тем все больше и больше обнаруживалось, что простейшие организмы устроены совсем не так просто, как это думали раньше.
Тело всякого организма - растения, улитки, червя, рыбы, птицы, зверя, человека, - состоит из мельчайших пузырьков, видимых только в микроскоп. Оно составлено из этих пузырьков-клеток, как дом сложен из кирпичей. Разные органы различных животных и растений содержат клетки, отличающиеся друг от друга по своему виду. Приспосабливаясь к той работе, которая возложена на данный орган, клетки, его составляющие, так или иначе, изменяются, но в принципе все клетки всех организмов сходны между собой. Микроорганизмы отличаются только тем, что все их тело состоит всего-навсего из одной-единственной клетки. Это принципиальное сходство всех организмов подтверждает общепринятую теперь в науке мысль, что все живущее на Земле связано, так сказать, кровным родством. Более сложные организмы произошли из более простых, постепенно изменяясь и совершенствуясь. Таким образом, стоит только разъяснить себе образование какого-нибудь простейшего организма - и происхождение всех животных и растений становится понятным.
Но, как уже было сказано, и простейшие, состоящие всего из одной клеточки, представляют себе весьма сложные образования. Их главная составная часть, так называемая протоплазма, - это полужидкое, тягучее студенистое вещество, пропитанное водой, но в воде нерастворимое. В состав протоплазмы входит целый ряд исключительно сложных химических соединений (главным образом белков и их производных), которые нигде в другом месте не встречаются, только в организмах. Эти вещества не просто смешаны, а находятся в особом, мало еще до сего времени исследованном состоянии, благодаря которому протоплазма обладает тончайшей, плохо различимой даже в микроскоп, но чрезвычайно сложной структурой. Предположение о том, что такое сложное образование с вполне определенной тонкой организацией могло самопроизвольно зародиться в течение нескольких часов в бесструктурных растворах, какими являются бульоны и настои, так же дико, как и предположение об образовании лягушек из майской росы или мышей из зерна.
Исключительная сложность строения даже наиболее простых организмов так поразила умы некоторых ученых, что они пришли к убеждению о существовании непроходимой пропасти между живым и неживым. Переход неживого в живое, организованное казался им абсолютно невозможным ни в настоящем, ни в прошлом. «Невозможность самозарождения в какое бы то ни было время,— говорит известный английский физик В. Томсон,— нужно считать так же прочно установленной, как закон всемирного тяготения».
Но как же тогда произошла жизнь на Земле? Ведь было время, когда Земля, по общепринятому теперь в науке взгляду, представляла собой раскаленный добела шар. За это говорят и астрономия, и геология, и минералогия, и прочие точные науки — это несомненно. Значит, на Земле существовали такие условия, при которых жизнь была невозможна, немыслима. Только после того, как земной шар потерял значительную часть своего тепла, рассеяв его в холодное межпланетное пространство, только после того, как охлажденные водяные пары образовали первые тепловые моря, стало возможно существование организмов, подобных тем, которые мы сейчас наблюдаем. Для разъяснения этого противоречия была создана теория, носящая довольно сложное название — теории панспермии.
Основателем этой теории является Г. Э. Рихтер. Исходя из представления, что в мировом пространстве везде носятся маленькие частицы твердого вещества (космозои), отделившиеся от небесных тел, указанный автор допускал, что одновременно с этими частицами, может быть прилепившись к ним, носятся жизнеспособные зародыши микроорганизмов. Таким, образом эти зародыши могут переноситься с одного, заселенного организмами небесного тела на другое, где жизни еще нет. Если на этом последнем уже создались благоприятные жизненные условия, в смысле подходящей температуры и влажности, то зародыши начинают прорастать, развиваться и являются впоследствии родоначальниками всего органического мира данной планеты.
Эта теория" приобрела в научном мире много сторонников, между которыми были даже такие выдающиеся умы, как Гельмгольц и В.Томсон. Ее защитники стремились главным образом научно обосновать возможность такого переноса зародышей с одного небесного тела на другое, при котором сохранялась бы жизнеспособность этих зародышей. Ведь на самом деле, в конце концов главный вопрос заключается именно
в том, может ли спора совершить такое длительное и полное опасностей путешествие, как перелет из одного мира в другой, не погибнув, сохранив способность прорасти и развиться в новый организм. Разберем подробно, какие опасности встречаются на пути зародыша.
Прежде всего это холод межпланетного пространства (220° ниже нуля). Отделившись от родной планеты, зародыш обречен долгие годы, столетия и даже тысячелетия носиться при такой ужасающей температуре, прежде чем счастливый случай даст ему возможность опуститься на новую землю. Невольно является сомнение, способен ли зародыш выдержать такое испытание. Для решения этого вопроса обращались к исследованию устойчивости по отношению к холоду современных нам спор. Опыты, произведенные в этом направлении, показали, что холод зародыши микроорганизмов выносят превосходно. Они сохраняют свою жизнеспособность даже после шестимесячного пребывания при 200° ниже нуля. Конечно, 6 месяцев не 1000 лет, но все же опыт дает нам право предполагать, что по крайней мере некоторые из зародышей могут перенести страшный холод межпланетного пространства.
Гораздо большую опасность для зародышей представляет их полная незащищенность от световых лучей. Их путь меж планетами пронизан лучами солнц, губительными для большинства микробов. Некоторые бактерии погибают от действия прямых солнечных лучей уже в течение нескольких часов, другие более устойчивы, но на всех без исключения микробов очень сильное освещение действует неблагоприятно. Однако это неблагоприятное действие в значительной степени ослабляется в отсутствие кислорода воздуха, а мы знаем, что в межпланетном пространстве воздуха нет, и потому можем не без основания предполагать, что зародыши жизни выдержат и это испытание.
Но вот счастливый случай дает возможность зародышу попасть в сферу притяжения какой-либо планеты с благоприятными для развития жизни условиями температуры и влажности. Скитальцу осталось, только, подчиняясь силе тяжести, упасть на его новую Землю. Но как раз тут, почти уже в мирной гавани, и ждет его грозная опасность. Ранее зародыш носился в безвоздушном пространстве, но теперь, прежде чем упасть на поверхность планеты, он должен пролететь через довольно толстый слой воздуха, окутывающий со всех сторон эту планету.
Всем, конечно, хорошо известно явление «падающих звезд»— метеоров. Современная наука объясняет это явление следующим образом. В межпланетном пространстве носятся твердые тела и частицы различных размеров, возможно, осколки планет или комет, залетевшие в нашу солнечную систему из отдаленнейших мест Вселенной. Пролетая поблизости от земного шара, они притягиваются этим последним, но, прежде чем упасть на его поверхность, они должны пролететь через воздушную атмосферу. Вследствие трения о воздух быстро падающий метеорит нагревается до белого каления и становится видимым на темном небесном своде. Только немногие из метеоритов достигают земли, большинство сгорает от сильного жара еще далеко от ее поверхности.
Подобной же участи должны подвергнуться и зародыши. Однако различные соображения показывают, что подобного рода гибель не является обязательной. Есть основания предполагать, что по крайней мере некоторые из зародышей, попавшие в атмосферу той или иной планеты, доберутся до ее поверхности жизнеспособными.
Вместе с тем не нужно забывать о тех колоссальных астрономических промежутках времени, в течение которых Земля могла засеваться зародышами из других миров. Эти промежутки исчисляются миллионами лет! Если за это время из многих миллиардов зародышей хотя бы один добрался благополучно до поверхности Земли и нашел здесь подходящие для своего развития условия, то этого было бы уже достаточно для образования всего органического мира. Между тем эта возможность при современном состоянии науки представляется хотя и маловероятной, но допустимой; во всяком случае, у нас нет фактов, которые ей прямо противоречили бы.
Однако теория панспермии является ответом только на вопрос происхождении земной жизни, а отнюдь не на вопрос о происхождении жизни вообще.
«Если это предположение,— говорит Карус Штерне,— лишь отодвигает начало жизни к первому по времени своего появления миру небесного пространства, то с философской точки зрения оно совершенно бесполезный труд; ибо что могло случиться в первом мире, то возможно во втором и в третьем, будет ли то акт творения или самопроизвольного зарождения».
«Одно из двух,— говорит Гельмгольц.— Органическая жизнь или когда-либо началась (зародилась), или существует вечно». Если признать первое, то теория панспермии теряет всякий логический смысл, так как если жизнь могла зародиться где-либо во вселенной, то, исходя из однообразия мира, мы не имеем никаких оснований утверждать, что она не могла зародиться и на Земле. Поэтому сторонники разбираемой теории принимают положение о вечности жизни. Они признают, что «жизнь только меняет свою форму, но никогда не создается из мертвой материи».
Таким образом, они сразу и окончательно ставят крест над дальнейшим исследованием вопроса о происхождении жизни. Они стремятся вырыть непроходимый ров между живым и неживым и поставить предел стремлениям человеческого ума к тем безграничным обобщениям, к которым ведет его точная наука.
Но имеем ли мы логическое право на признание коренного различия между живым и неживым? Есть ли в окружающей нас природе такие факты, которые убеждают нас в том, что жизнь существует вечно и имеет так мало общего с неживой природой, что ни при каких условиях, никогда не могла из нее образоваться, выделиться? Можем ли мы признать организмы образованиями совершенно, принципиально отличными от всего остального мира?
43.Формы и уровни жизни. Все объекты живой и неживой природы по строению представляют собой системы, для которых характерно иерархическое соподчинение входящих в них элементов, т.е. структурных уровней организации. Самые элементарные из них относятся к области познания физики, – это электроны, протоны, другие элементарные частицы. Затем идут атомные уровни, молекулярные уровни, изучением которых занимаются как физика, так и химия. За молекулярным уровнем следует субмолекулярный, – уровень исследования работы макромолекул как единого целого; и так далее, вплоть до уровня организмов и сообществ из них. Каждый нижележащий уровень располагается как бы в оболочке вышележащего уровня и сохраняет его особенности. Действительно, молекулярный состав мембраны клетки будет отличаться, например, от молекулярного состава ядра клетки, а конкретный химический элемент будет всегда иметь свое, отличное от других строение электронных оболочек. Конкретизация знания об объекте предполагает суммирование знаний о его строении на всех уровнях знаний. А изучение каждого уровня организации живой материи должно иметь биологический смысл, т.е. должно быть направлено на изучение феномена, а не просто структуры ее физико-химической организации. Для наглядности приведем пример не из биологии, а из жизни. Представьте себя владельцем небольшого особняка. Каждый из кирпичей, из которых построен ваш дом, имеет тот же цвет, что и цвет всего здания. Таким образом, рассматривая отдельный кирпич в стене дома, вы одновременно получаете информацию о свойствах целого дома. Но можете ли вы быть уверены в том, что цвет стен в комнатах соответствует цвету кирпичей? Да, – в том случае, если стены в вашем доме голые. Нет, – если они покрыты обоями. Как мы видим на этом простом примере, – изучение объекта на более низком уровне несет только часть информации обо всем объекте и не всегда соответствует полному представлению о нем. Ясно, что для того, чтобы картина была более полной, желательно осмотреть все здание снаружи, изучить его планировку, узнать из каких строительных материалов оно сделано, узнать свойства этих материалов и т.д. В более общем виде, это и обозначает суммирование или синтез знаний об объекте исследования, полученных на всех уровнях познания. Это задача архисложная и не всегда выполнимая. Среди ученых есть откровенные противники структурирования и выделения уровней познания при изучении биологических объектов. Они считают жизнь уникальным явлением, не подлежащим сухому анализу и рассматривают проявления жизни во всем многообразии. Безусловно, эта идея очень привлекательная, но трудно не согласиться с тем фактом, что биологические явления сами по себе – явления достаточно сложные для изучения и понимания, сложные по своей органической структуре и по своим функциональным проявлениям. Поэтому ясно, что без деления такой системы на отдельные части, которые был бы в силах охватить мозг исследователя просто не обойтись. Деление же на части или уровни исследования происходит в соответствии с реальными структурными уровнями живого объекта. Проблема различной степени упорядоченности и организованности живой материи возникла у натуралистов еще в XVIII–XIX вв. Первым толчком к ее проявлению послужило провозглашение в 1830-е годы клеточной теории. А в 1846 г. М. Шлейден – один из основателей этой теории – сформулировал положение о существовании живых тел «различного порядка организованности». Незадолго до этого Э. Геккель выдвинул гипотезу, согласно которой протоплазма клетки не однородна, а состоит из каких-то надмолекулярных частиц, названных им пластидулами. С одной стороны – утверждалась идея дискретности, т.е. делимости целого на структуры более низкой организации, а с другой – этим структурам приписывалась постоянная и самостоятельная функция. В первой половине XIX в. в биологии появляется история теории систем. Одна из первых ее страниц была посвящена редукционизму, представляющему собой механистический материализм. Согласно ему все высшее сводится к низшему: процессы жизнедеятельности – к совокупности их физико-химических реакций. Качественное своеобразие живого отрицалось. Противников «редукционистов» в то время называли виталистами. «Виталисты» утверждали, что органическое целое невозможно свести к простой сумме его частей, и оно управляется божественной силой. Несколько в стороне находились взгляды экспериментирующих биологов, придерживавшихся физиологического детерминизма. Так К. Бернар, полагал, что все структуры и процессы в многоклеточном организме определяются внутренними причинами организма, поиском которых необходимо заниматься ученым. В 1920-е годы американские философы Г. Браун и Р. Селларс разработали новое понятие структурные уровни. Согласно их теории, эти уровни различаются не только классами сложности, но и закономерностями их функционирования. Они выдвинули идею иерархической соподчиненности уровней, вхождение каждого последующего уровня в предыдущий с образованием единого целого, в котором низкий уровень «виден» в самом высшем. Так родилась концепция многоуровневой иерархической «матрешки». Данная концепция – это не теория жизни. Но она является эффективным инструментом для получения комплексного, интегрирующего знания, которое может служить базой для возведения теоретической биологии.
44.Этапы развития биологии связаны с интересом к познанию мира живых существ, который возник на самых ранних стадиях зарождения человечества, отражая практические нужды людей. Естественное желание узнать, следует ли избегать встречи с теми или иными животными и растениями или же, наоборот, использовать их в своих целях, объясняет, почему первоначально интерес людей к живым формам проявляется в попытках их классификации, подразделения на полезные и опасные, болезнетворные, представляющие пищевую ценность, пригодные для изготовления одежды, предметов обихода, удовлетворения эстетических запросов.
По мере накопления конкретных знаний наряду с представлением о разнообразии организмов возникла идея о единстве всего живого. Особенно велико значение этой идеи для медицины, так как это указывает на универсальность биологических закономерностей для всего органического мира, включая человека. В известном смысле история современной биологии как науки о жизни представляет собой цепь крупных открытий и обобщений, подтверждающих справедливость этой идеи и раскрывающих ее содержание.
Важнейшим научным доказательством единства всего живого послужилаклеточная теория Т. Шванна и М. Шлейдена (1839). Открытие клеточного строения растительных и животных организмов, уяснение того, что все клетки (несмотря на имеющиеся различия в форме, размерах, некоторых деталях химической организации) построены и функционируют в целом одинаковым образом, дали толчок исключительно плодотворному изучению закономерностей, лежащих в основе морфологии, физиологии, индивидуального развития живых существ.
Открытием фундаментальных законов наследственности биология обязана Г.Менделю (1865), Г. де Фризу, К. Корренсу и К. Чермаку (1900), Т. Моргану (1910-1916), Дж. Уотсону и Ф. Крику (1953). Названные законы раскрывают всеобщий механизм передачи наследственной информации от клетки к клетке, а через клетки - от особи к особи и перераспределения ее в пределах биологического вида. Законы наследственности важны в обосновании идеи единства органического мира; благодаря им становится понятной роль таких важнейших биологических явлений, как половое размножение, онтогенез, смена поколений.
Представления о единстве всего живого получили основательное подтверждение в результатах исследований биохимических (обменных, метаболических) и биофизических механизмов жизнедеятельности клеток. Хотя начало таких исследований относится ко второй половине XIX в., наиболее убедительны достижения молекулярной биологии, ставшей самостоятельным направлением биологической науки в 50-е гг. XX столетия, что связано с описанием Дж. Уотсоном и Ф. Криком (1953) строения дезоксирибонуклеиновой кислоты (ДНК). На основе доступа к личной биологической информации возможно ее целенаправленное изменение, в том числе путем введения генов от других видов. Такая возможность представляет собой важнейшее доказательство единства и универсальности базисных механизмов жизнедеятельности.
Молекулярная биология уделяет главное внимание изучению в процессах жизнедеятельности роли биологических макромолекул (нуклеиновые кислоты, белки), закономерностей хранения, передачи и использования клетками наследственной информации. Молекулярно-биологические исследования раскрыли универсальные физико-химические механизмы, от которых зависят такие всеобщие свойства живого, как наследственность, изменчивость, специфичность биологических структур и функций, воспроизведение в ряду поколений клеток и организмов определенного строения.
Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии свидетельствуют в пользу единства органического мира в его современном состоянии. Живое на планете представляет собой единое целое в историческом плане. Свое дальнейшее развитие, связанное с достижениями генетики и популяционной биологии, она получила в трудах А. Н. Северцова, Н. И. Вавилова, Р. Фишера, С. С. Четверикова, Ф. Р. Добжанского, Н. В. Тимофеева-Ресовского, С. Райта, И. И. Шмальгаузена, чья плодотворная научная деятельность относится к XX столетию.
К. Линней (1735) ввел бинарную классификацию, согласно которой для определения положения организмов в системе живой природы указывается их принадлежность к конкретному роду и виду. Хотя бинарный принцип сохранен в современной систематике, оригинальный вариант классификации К. Линнея носит формальный характер. Биологи до создания теории эволюции относили живые существа к соответствующему роду и виду по их подобию друг другу, прежде всего близости строения.
Каждый крупный шаг на пути познания фундаментальных законов жизни неизменно оказывал влияние на состояние медицины, приводил к пересмотру содержания и понимания механизмов патологических процессов. Соответственно пересматривались принципы организации лечебной и профилактической медицины, методы диагностики и лечения.
Так, исходя из клеточной теории и разрабатывая ее дальше, Р. Вирхов создал концепцию клеточной патологии (1858), которая на долгое время определила главные пути развития медицины. Эта концепция, придавая особое значение в течении патологических состояний структурно-химическим изменениям на клеточном уровне, способствовала возникновению в практическом здравоохранении патологоанатомической, прозекторской службы.
Применив генетико-биохимический подход в изучении болезней человека, А. Гаррод заложил основы молекулярной патологии (1908). Этим он дал ключ к пониманию практической медициной таких явлений, как различная восприимчивость людей к болезням, индивидуальный характер реакции на лекарственные препараты.
Успехи общей и экспериментальной генетики 20-30-х годов ХХв. стимулировали исследования по генетике человека. В результате возник новый раздел патологии - наследственные заболевания, появилась особая служба практического здравоохранения — медико-генетические консультации.
Геномика и современные молекулярно-генетические технологии открывают доступ к диагностике на уровне нуклеотидных последовательностей ДНК не только собственно генных болезней, но также предрасположенности к ряду тяжелых соматических патологических состояний (астма, диабет и др). Доступный уровень генодиагностики создает предпосылки для осознанного манипулирования с наследственным материалом людей в целях генотерапии и генопрофилактики заболеваний. Достижения в названных областях науки привели к появлению целой отрасли производства, работающей на здравоохранение, - медицинской биотехнологии.
Зависимость состояния здоровья людей от качества среды и образа жизни уже не вызывает сомнений ни у практикующих врачей, ни у организаторов здравоохранения. Закономерным следствием этого является наблюдаемая в настоящее время экологизация медицины.
