- •Призначення та основні функції операційної системи.
- •Моделі операційних систем.
- •Класифікація операційних систем.
- •Виникнення та розвиток Unix - подібних систем.
- •Принципи структуризації побудови ос.
- •Підходи до архітектурної ос.
- •Основні функціональні підсистеми сучасних ос.
- •Підсистема управління оперативною пам'яттю
- •Підсистема управління задачами (процесами)
- •Апаратна підтримка функціонування ос.
- •Призначення та принципи роботи основних функціональних підсистем.
- •Інтерфейс системних викликів, статичні та динамічні бібліотеки.
- •Процес. Дескриптор процесу. Створення та завершення процесів.
- •Порядок запуску програм засобами базового інтерфейсу управління процесами.
- •Основні можливості та функції базового інтерфейсу управління процесами.
- •Ідентифікатор процесу. Основні атрибути процесу. Оперування атрибутами процесу.
- •Організація взаємодії між батьківським та дочірніми процесами.
- •Створення та завершення процесів. Поняття про дескриптор процесу.
- •Отримання ідентифікаторів процесів. Стани процесу.
- •Загальний порядок та фізичний зміст створення нового процесу.
- •Поняття процесу з позиції концепції багатопотокового виконання.
- •Поняття про життєвий цикл процесу.
- •Основні можливості та функції базового інтерфейсу управління сигналами. Диспозиція сигналу процесу.
- •Загальний порядок генерування та доставки сигналів процесу. Типи та властивості сигналів.
- •Основні можливості та функції базового інтерфейсу управління потоками.
- •Порядок створення та завершення потоків.
- •Принципи застосування базового інтерфейсу введення/виведення. Порядок роботи з файлом.
- •Основні можливості та функції стандартної бібліотеки введення/виведення.
- •Принципи застосування стандартної бібліотеки введення/виведення. Порядок роботи з файлом.
- •Поняття файлу. Типи файлів. Дані та метадані файлу.
- •Особливості застосування базового інтерфейсу та стандартної бібліотеки введення/виведення.
- •Загальні концепції синхронізації задач.
- •Сутність проблеми змагань між задачами. Умови виникнення змагань. Критичний код, критичний ресурс.
- •Загальні відомості про інтерфейси користувача ос.
- •Графічний інтерфейс
- •Порівняння графічного інтерфейсу та інтерфейсу командного рядка.
- •Приклади графічних середовищ користувача. Організація текстового сеансу роботи користувача.
- •Загальний порядок завантаження ос. Ланцюгове завантаження.
- •Досистемний етап завантаження.
- •Системний етап завантаження. Реалізація системного етапу завантаження Linux.
- •Процес init. Файли /etc/inittab, /etc/rc.D/rc.Sysinit.
- •Сценарії ініціалізації ос. Приклади системних демонів.
- •Компіляція та компоновка. Основні прийоми розробки початкових текстів, компіляції і компоновки програм. Статична компоновка. Динамічне зв’язування.
- •Створення та підключення бібліотек. Види бібліотек. Управління вибором способу підключення бібліотек, наявних у двох варіантах.
- •Види бібліотек та порядок створення бібліотек.
- •Поняття файлу та файлової системи. Імена файлів. Символічне посилання на файл.
- •Фізична організація файлових систем. Типи фізичної організації файлових систем. Поняття фрагментації даних.
- •Типи файлів. Власники файлів. Права доступу до файлів.
- •Основні атрибути файлів.
- •Призначення та приклади використання утиліт: mkdir, mknod, mkfifo, cp, mv, rename.
- •Типи користувачів. Облікові даних користувачів. Групи користувачів.
- •Призначення та зміст файлів, що утворюють традиційну базу обліку користувачів Unix. Псевдокористувачі.
- •Призначення та приклади застосування базових утиліт управління обліком користувачів Unix: useradd, usermod, userdel, groupadd.
- •Призначення та приклади застосування базових утиліт управління обліком користувачів Unix: groupmod, groupdel, passwd, gpasswd.
- •Програма, задача, процес. Привілейовані та непривілейовані процеси.
- •Ідентифікатор процесу. Родинні відносини між процесами.
- •Призначення та приклади застосування базових утиліт управління задачами Unix: ps, kill, nice, renice, su, sudo.
- •Поняття мережевої та розподіленої ос. Вимоги до розподілених ос.
- •Поняття обчислювального кластера. Розподілена подільна пам’ять.
- •Принципи та обмеження основних способів оповіщення задач про настання подій (синхронізації).
- •Основні програмні інтерфейси синхронізації виконання процесів.
- •Командний сценарій. Потоки введення/виведення, конвеєри.
- •Стандартне виведення
Командний сценарій. Потоки введення/виведення, конвеєри.
Потоки введення/виведення в системах типу UNIX (і багато інших) - потоки процесу, що мають номер (дескриптор), зарезервований для виконання деяких «стандартних» функцій. Як правило (хоча і не обов'язково), ці дескриптори вже відкриті в момент запуску завдання.
Стандартне введення
Потік номер 0 (stdin) зарезервовано для читання команд користувача або вхідних даних.
При інтерактивному запуску програми за замовчуванням stdin націлений на читання з пристрою текстового інтерфейсу користувача (клавіатури). Командна оболонка UNIX (і оболонки інших систем) дозволяють змінювати введення цього потоку за допомогою символу «<». Системні програми (демони тощо), як правило, не користуються цим потоком.
Стандартне виведення
Потік номер 1 (stdout) зарезервовано для виведення даних, як правило (хоча і не обов'язково) текстових.
При інтерактивному запуску програми stdout за замовчуванням націлений на запис на пристрій виведення (монітор). Командна оболонка UNIX (і оболонки інших систем) дозволяють скерувати цей потік за допомогою символу «>». Для виконання програм у фоновому режимі цей потік зазвичай переводять у файл.
В Юнікс-подібних операційних системах, конвеєри відповідають оригінальним конвеєрам програм: набір процесів, зв'язані своїми стандартними потоками вводу-виводу таким чином, що вихідний потік кожного процесу (stdout) безпосередньо зв'язується зі стандартним потоком вводу (stdin) наступного. Кожний зв'язок реалізується як анонімний конвеєр. Програми-фільтри часто використовуються в подібнх комбінаціях. Цю концепцію було запропоновано Дугласом Мак-Ілроєм для оболонок Юнікс і дано назву за аналогією зі справжніми конвеєрами.
В більшості Юнікс-подібних операційних системах, процеси конвеєра запускаються одночасно та їхні стандартні потоки зв'язуються, всі ці процеси керуються ядром операційної системи разом із іншими процесами. Важливою особливістю реалізації конвеєрів на Юніксах, є застосування буферизації під час передачі даних. Завдяки буферізації, записування та зчитування даних в конвеєр може відбуватись із різною швидкістю, без втрати даних.
Приклади застосування операторів перенаправлення введення/виведення та конвеєрів.
Однією з найкорисніших фундаментальних властивостей Unix (у тому числі й Linux) є конвеєри. Конвеєри уможливлюють зв'язок між процесами, котрі не призначались спеціально для такої взаємодії. А це дозволяє знаряддям з досить вузьким колом функцій комбінуватись у різні способи для виконання складніших завдань.
Простий приклад використання конвеєра:
ls | grep x
Оболонка bash, перевіряючи командний рядок, знаходить вертикальну риску |, що розділює дві команди, після чого, як і інші оболонки, запускає обидві команди, під'єднуючи вивід першої команди до вводу другої. Програма ls видає список файлів у поточному каталозі, тоді як grep читає вивід ls й видруковує лише ті лінії, які містять x.
Наведений приклад, відомий більшості користувачів Unix, є так званим "неназваним конвеєром". Такий конвеєр існує лише в ядрі й недоступний для процесів, що його створили — в даному випадку це оболонка bash. Кому невідомо: головний процес — це перший процес, створений програмою. Він може, в свою чергу, створювати підпроцеси.
Перенаправлення потоків введення-виведення здійснюється, подібно DOS за допомогою символів:
> - перенаправлення стандартного потоку виводу >> - перенаправлення стандартного потоку виводу у режимі записування < - перенаправлення стандартного потоку вводу << - отримання дані зі стандартного потоку вводу до тих пір, поки не зустрінеться розділювач Однак, на відміну від DOS при створенні програмного каналу між двома процесами в ОС UNIX/Linux запускає обидва процесу одночасно і здійснює передачу інформації через системний буфер (без проміжної запису на диск). Таким чином, програмні канали в ОС UNIX/Linux є дуже ефективним способом обміну. У разі ппереполнения системного буфера (наприклад, якщо `передавальна"" програма видає інформацію в канал швидше, ніж її може обробити `приймаюча"" програма) ОС автоматично припиняє той процес, який здійснює запис у канал до звільнення буфера.
